期刊文献+

基于随机集理论的多目标跟踪方法 被引量:2

Multi-target Tracking Based on Random Set Theory
下载PDF
导出
摘要 多目标跟踪问题通常包括目标信号的检测与目标状态的估计,同时还涉及到对探测范围内目标数量的确定。传统的跟踪方法将目标检测、状态估计与数量确定分别使用独立的模块或算法来处理。在这种模式下,每个模块仅考虑测量数据中与其功能直接相关的信息,模块之间没有信息的交互,因而很难得到全局最优的解。基于随机集理论的多目标跟踪方法将场景内的全部目标看作一个全局变量,目标状态与目标测量分别构成各自的随机有限集。从而多目标跟踪问题可以放在一个随机集模型下的贝叶斯滤波框架中研究。在每一个滤波周期内,通过对随机集的处理,实时地估计目标的数量、状态与类型,实现多目标的联合检测、跟踪与识别。 The multi-target tracking problem usually concerns the signal detection and state estimation,where the determining of the number of the targets in surveillance range is also involved.The traditional techniques handle this problem using separate modules or algorithms. In this pattern each module just takes the information directly related to its functions into account in measurement data,there is no information interacting existed within modules with each other,so it is difficult to get a global optimal solution. In method of random set based multi-target tracking all of the targets are considered as a global variable in the scenario,the target states vector and target measurement data constitute a random finite set respectively. With this idea,the research of multi-target tracking problem can be put into a unified framework of Bayesian filtering based on random set theory. In each cycle of filtering,the joint detection,tracking and recognition can be achieved by online estimating the parameters of random sets.
出处 《火力与指挥控制》 CSCD 北大核心 2015年第5期49-52,56,共5页 Fire Control & Command Control
基金 国家自然科学基金(61174024) 陕西省教育厅科研计划基金(14JK2159) 西京学院高层次人才专项基金资助项目(XJ14B01)
关键词 目标跟踪 随机集 贝叶斯滤波 概率密度 target tracking,random set,bayesian filtering,probability density
  • 相关文献

参考文献10

  • 1Mahler R. Statistical Multisource Multitarget Information Fusion[M]. Norwood MA: Artech House,2007.
  • 2陈金广,马丽丽.基于随机集理论的多目标跟踪研究进展[J].光电工程,2012,39(10):15-20. 被引量:6
  • 3Ba-Ngu V,Singh S,Arnaud D. Sequential Monte CarloMethods for Multi-target Filtering with Random Finite sets[J]. IEEE Transactions on Aerospace and Electronic Systems,2005,41(4): 1224-1245.
  • 4Angelova D,Mihaylova L. Joint Target Tracking and Classificationwith Particle Filtering and Mixture Kalman FilteringUsing Kinematic Radar Information[J]. Digital Signal Processing,2006,16(1):180-240.
  • 5李乐,嵇成新.基于SOFM神经网络的多目标跟踪方法[J].四川兵工学报,2009,30(4):20-23. 被引量:7
  • 6Samil A M,Afsar S. A Tracker-aware Detector ThresholdOptimization Formulation for Tracking Maneuvering Targetsin Clutter[J]. Signal Processing,2011,91(9): 2213-2221.
  • 7田淑荣,盖明久,何友.随机集的概率假设密度粒子滤波[J].海军航空工程学院学报,2006,21(4):455-458. 被引量:4
  • 8Ma W K,Ba-Ngu V,Singh S S,et al. Tracking an UnknownTime-varying Number of Speakers Using TDOA Measurements:a Random Finite Set Approach[J]. IEEE Transactionson Signal Processing,2006,54(9): 3291-3304.
  • 9Bar-Shalom Y,Kirubarajan T,Gokberk C. Tracking withClassification-aided Multiframe Data Association[J]. IEEETransactions on Aerospace and Electronic Systems,2005,41(3): 868-878.
  • 10Nguyen H T. An Introduction to Random Sets[M]. London:Taylor & Francis Group,LLC,2006.

二级参考文献45

共引文献14

同被引文献9

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部