期刊文献+

基于局部线性模型树的高压共轨柴油机排放模型 被引量:5

Emission Model of High-pressure Common Rail Diesel Engine Based on Local Linear Model Tree
下载PDF
导出
摘要 为研究面向闭环控制的柴油机在线排放模型,以1台高压共轨、涡轮增压中冷柴油机的转速、扭矩、空燃比、燃烧始点、燃烧重心、燃烧终点、最高燃烧温度、最大缸内压力等运转和燃烧的各项参数为基础,运用局部线性模型树对排放物HC,CO,CO2,NOx和烟度进行了仿真研究。研究结果表明,以转速、扭矩、空燃比为输入时,CO,CO2,NOx的仿真结果与试验值具有较好的一致性,以转速、扭矩、空燃比、燃烧重心为输入时,HC、烟度的仿真结果与试验值具有较好的一致性。各排放的期望响应与仿真输出的平均误差在10%以内,线性回归相关系数达到0.96以上。各个排放物的仿真过程单独进行时,可以得到较好的仿真效果。因此,局部线性模型树模型适用于高压共轨柴油机排放物的仿真。 In order to research the online emission model of the closed-loop control diesel engines ,the hydrocarbon (HC ) , carbon monoxide (CO) ,carbon dioxide (CO2 ) ,nitrogen oxides (NOx ) and soot of a high-pressure common rail ,turbocharged and inter-cooled diesel engine were simulated with the local linear model tree based on the operation and combustion parameters such as the speed ,torque ,air-fuel ratio ,combustion timing ,combustion center ,combustion termination ,maximum combus-tion temperature and maximum in-cylinder pressure .The results indicate that the simulated results of CO ,CO2 ,and NOx emis-sion and the simulated results of HC and soot emission have good consistency with their experimental values when using the speed ,torque and air-fuel ratio as the input and using those parameters and combustion center as the input respectively .The average error between expected response and simulated output is lower than 10% and the linear regression correlation coeffi-cient is beyond 0 .96 .Good simulation effect achieved when each of the emissions was simulated separately .Therefore ,the lo-cal linear model tree is appropriate for the emission simulation of high-pressure common rail diesel engine .
出处 《车用发动机》 北大核心 2015年第4期16-20,共5页 Vehicle Engine
基金 国家自然科学基金(51266015) 云南省应用基础面上项目(2013FB052) 云南省教育厅科学研究基金项目(2013Z081) 西南林业大学科研启动基金(C14120)
关键词 局部线性模型树 柴油机 排放 模型 local linear model tree diesel engine emission model
  • 相关文献

参考文献8

  • 1张仁健. 北京雾霾6大主要贡献源[DB/OL].[2013-06-06]. http:/ / wenwen. sogou. co m /z/q /384993025. htm.
  • 2何仁,周孔亢.应用人工神经网络预测内燃机基本性能[J].机械工程学报,1996,32(6):101-104. 被引量:7
  • 3Jalili-Kharaajoo M , Rashidi F. Predictive control of asolution copolymerization reactor using locally linearmodel tree (LO LIM O T) algorithm, to appear in Proc[C]//2 n d IF AC Conference on Control System Design.Slovenia: [s. n.] ,2003.
  • 4Jalili-Kharaajoo M , Ranji R , Bagherzadeh H. Predictivecontrol of a fossil power plant based on locally linearmodel tree (LO LIM O T) , in p ro c[C]//IE E E Conferenceon Control Application. Istanbul:[s. n.],2003.
  • 5Fink A , Nelles O. Nonlinear Internal Model ControlBased on Local Linear Neural Networks [C]//IE E ESystems Man and Cybermetics. Tucson: [s. n.] ,2001.
  • 6Isermann R , Nelles 0 , Fink A. Local linear modeltrees (lolimot) toolbox for nonlinear system identification[C]//12 th IFAC Symposium on System Identification(SYSID). Santa Barbara: [s. n.],2000.
  • 7Hajian A , Zomorrodian H , Styles P, et al. Depth estimationof cavities from microgravity data using a newapproach: the local linear model tree (L O L IM O T )[J].Near Surface Geophysics,2012(10) :221-234.
  • 8Marzooghi H , Raoofat M , Dehghani M , et al. Dynamicmodeling of solid oxide fuel cell stack based onlocal linear model tree algorithm [J]. InternationalJournal of Hydrogen Energy,2012(37) :4367-4376.

二级参考文献3

共引文献6

同被引文献35

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部