期刊文献+

水稻叶倾角调控的分子机制研究进展 被引量:5

Research progress in molecule regulation mechanism of leaf inclination angle in rice(Oryza sativa L.)
原文传递
导出
摘要 叶倾角发育是影响叶片直立程度的重要因素,而直立叶型是高产水稻株型的重要指标之一。本文综述了近年来有关水稻叶倾角基因功能鉴定和分子调控机制的研究进展。激素在水稻叶倾角发育中起主要调控作用,尤其以油菜素内酯、生长素和赤霉素三类激素的作用最大。调控过程涉及到激素的合成与信号途径,同时也存在激素间的相互作用和其他调控途径,表明水稻叶倾角的调控是一个涉及多基因共同作用和多条信号途径的复杂过程。植物激素合成基因表达异常或信号传导异常可导致叶枕近轴与远轴面细胞分裂与生长不平衡,进而改变叶倾角。 Leaf angle development is an important factor affecting the extent of the blade upright and up- right blade phenotype is an essential index for high yield rice breeding. The research progress in gene iden- tification and molecular regulation mechanisms for the rice leaf angle are reviewed. Hormones have been found to play key roles in regulating rice leaf angle, with brassinosteroid, auxin and gibberellin having the greatest effect. The regulation process involved hormone synthesis and signaling pathways, and the interac- tions between hormones and other regulatory pathways. These indicate that rice plant leaf angle regulation is a complex process involving multi-gene interaction and multiple signal pathways. Abnormal plant hormone bio- synthesis and/or signal transduction can lead to the imbalanced division and expansion of adaxial and abaxial cells in the collar, and resulting the changes in leaf angle.
出处 《生命的化学》 CAS CSCD 2015年第4期589-595,共7页 Chemistry of Life
基金 国家自然科学基金项目(31460061) 高等学校博士学科点专项科研基金(20124320110012) 湖南省科技厅科技计划重点项目(2014WK2004)
关键词 水稻 叶倾角 分子机制 叶枕 rice leaf angle molecular mechanisms collar
  • 相关文献

参考文献4

二级参考文献61

  • 1WANGDekai ZHANGHongxin HUGuocheng FUYaping SiHuamin SUNZongxiu.Genetic analysis and identification of a large leaf angles (lla) mutant in rice[J].Chinese Science Bulletin,2005,50(5):492-494. 被引量:4
  • 2Lin-Chuan Li,Ding-Ming Kang,Zhang-Liang Chen,Li-Jia Qu.Hormonal Regulation of Leaf Morphogenesis in Arabidopsis[J].Journal of Integrative Plant Biology,2007,49(1):75-80. 被引量:8
  • 3Benjamini, Y., and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29, 1165-1188.
  • 4Bishop, G., and Koncz, C. (2002). Brassinosteroids and plant steroid hormone signaling. Plant Cell. 14 Suppl., S97-S110.
  • 5Chandler, J.W., Cole, M., Flier, A., and Werr, W. (2009). BIM1, a bHLH protein involved in brassinosteroid signalling, controlsArabidopsis embryonic patterning via interaction with DORNROSCHEN and DORNROSCHEN-LIKE. Plant Mol. Biol. 69, 57-68.
  • 6Chory, J., Nagpal, R, and Peto, C.A. (1991}. Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. Plant Cell. 3, 445-459.
  • 7Chung, Y., Maharjan, RM., Lee, O., Fujioka, S., Jang, S,, Kim, B., Takatsuto, S., Tsujimoto, M., Kim, H., Cho, S., et al (2011). Auxin stimulates DWARF4 expression and brassinosteroid biosynthe- sis in Arabidopsis. Plant J. 66, 564-578.
  • 8Clouse, S.D. (2002). Arabidopsis mutants reveal multiple roles for sterols in plant development. Plant Cell. 14, 1995-2000.
  • 9Clouse, S.D., and Sasse, J.M. (1998). Brassinosteroids: essential regulators of plant growth and development. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 49, 427-451.
  • 10Clouse, S.D., Langford, M., and McMorris, T.C. (1996). A brassinoster- oid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol. 111,671-678.

共引文献63

同被引文献85

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部