期刊文献+

乙烯抑制剂对钾缺乏棉花根系生长和侧根形成的影响(英文)

Ethylene Inhibitors Affect Root Growth and Branching in Potassium-deficient Cotton
下载PDF
导出
摘要 水培条件下,通过用乙烯前体1-氨基环丙烷基羧酸(ACC)和乙烯抑制剂氨氧基乙酸(AOA)、Co2+和Ag+分别处理棉花幼苗根系和叶片,研究其对钾缺乏棉花根系伸长和侧根形成的影响,探讨钾缺乏棉花根系伸长和侧根形成与乙烯生成增加之间的关系。结果显示,钾充分营养液中,添加ACC显著抑制了棉花根系伸长和侧根形成。钾缺乏营养液中,添加ACC加重了对根系伸长和侧根发生的抑制;添加AOA和Ag+分别显著降低了根系长度和侧根数;添加Co2+显著提高了根系长度,但其高浓度显著减少了侧根数。由此可见,钾缺乏诱导乙烯释放增加或许是根系伸长受抑制的原因。钾缺乏条件下Co2+处理叶片显著增加了叶面积、根系长度和侧根数,这表明改善叶片生长可积极调节根系生长和发育。 The relationships between increased ethylene levels induced by potassium deficiency and the inhibition of root elongating and branching of cotton, were investigated by treating roots and leaves of cotton seedlings in hydroponic cultures containing ethylene precursor ACC(1-aminocyclopropane-1-carboxylic acid) and ethylene inhibitors AOA(aminooxyacetic acid), Co2+and Ag+, respectively. The addition of ACC to K+-rich culture medium simulated the effects of K deficiency on root growth and branching, and aggravated the effects of K deficiency in K+-poor culture medium. In contrast, treatment with high concentrations of the ethylene synthesis inhibitor AOA decreased primary root length(PRL), lateral root length(LRL), and lateral root number(LRN) under low K conditions, and this was similar for the ethylene action inhibitor Ag+. Treatment with Co2+under low K conditions significantly increased LRL and, at high concentrations, PRL, but caused reduced LRN at high concentrations. Our results indicated increased ethylene levels induced by K deficiency might account for inhibition of root elongation, but not for the suppression of root branching. Leaf application of Co2+enhanced leaf area, root growth(PRL and LRL), and branching(LRN) of cotton seedlings grown under low K condition, though the effects of different Co2+concentrations were not significant. These findings suggest that improving leaf growth might positively regulate root morphology.
出处 《棉花学报》 CSCD 北大核心 2015年第4期362-371,共10页 Cotton Science
基金 国家自然科学基金(31271648) 河南省杰出青年基金(114100510008) 植物生理学与生物化学国家重点实验室开放课题(SKLPPBKF09004)
关键词 1-氨基环丙烷基羧酸(ACC) Co2+ 根系伸长 侧根形成 叶面积 ACC Co2+ root elongation lateral root formation leaf area
  • 相关文献

参考文献45

  • 1Hodge A, Berta G, Doussan C, et al. Plant root growth, architec- ture and function[J]. Plant and Soil, 2009, 321: 153-187.
  • 2Malamy J E. Intrinsic and environmental response pathways that regulate root system architecture[J]. Plant Cell and Environment, 2005, 28: 67-77.
  • 3Nibau C, Gibbs D J, Coates J C. Branching out in new directions: The control of root architecture by lateral root formation[J]. New Phytologist, 2008, 179: 595-614.
  • 4Gibbs D J, VoB U, Harding S A, et al. AtMYB93 is a novel nega- tive regulator of lateral root development in Arabidopsis[J]. New Phytologist, 2014, 203:1194-1207.
  • 5Lopez-Bucio J, Cruz-Ramr rez A, Herrera-Estrella L. The role of nutrient availability in regulating root architecture[J]. Current Opinion in Plant Biology, 2003, 6: 280-287.
  • 6Desnos T. Root branching responses to phosphate and nitrate[J]. Current Opinion in Plant Biology, 2008, 11 : 82-87.
  • 7Hafsi C, Debez A, Abdelly C. Potassium deficiency in plants: Effects and signaling cascades[J]. Acta Physiologiae Plantarum, 2014, 36: 1055-1070.
  • 8Shin R, Schachtman D P. Hydrogen peroxide mediates plant root cell response to nutrient deprivation[J]. Proc Natl Acad Sci US- A, 2004, 101: 8827-8832.
  • 9Armengaud P, Breitling R, Amtmann A. The potassium-depen- dent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling[J]. Plant Physiology, 2004, 136: 2556-2576.
  • 10Miao Baohe, Han Xingguo, Zhang Wenhao. The ameliorative effect of silicon on soybean seedlings grown in potassium-defi- cient medium[J]. Annals of Botany, 2010, 105: 967-973.

二级参考文献47

  • 1姜存仓,王运华,鲁剑巍,徐芳森,高祥照.植物钾效率基因型差异机理的研究进展[J].华中农业大学学报,2004,23(4):483-487. 被引量:35
  • 2周桃华,张海鹏,刘玲.转Bt基因抗虫棉施钾效应研究初报[J].中国农学通报,2006,22(8):292-296. 被引量:7
  • 3Kutz A, Muller A, Henning P, Kaiser W M, Piotrowsky M, Weiler E W. A role for nitrilase in the regulation of root morphology in sulphur-starving Arabidopsis thaliana. Plant J, 2002, 30:95-106.
  • 4Linkohr B I, Williamson L C, Fitter A H, Leyser O. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J, 2002, 29: 751-760.
  • 5Lopez-Bucio J, Cruz-Ramfrez A, Herrera-Estrella L. The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol, 2003, 6:280-287.
  • 6Hodge A. The plastic plant: Root responses to heterogeneous supplies of nutrients. New Phytol, 2004, 162:9-24.
  • 7de Jager A. Effects of localized supply of H2PO4^-, NO3^-, SO4^2-, Ca^2+ and K^+ on the production and distribution of dry matter in young maize plants. Neth JAgric Sci, 1982, 30:193-203.
  • 8Scott B J, Robson A D. The distribution of Mg, P and K in the split roots of subterranean clover. Ann Bot, 1991, 67:251-256.
  • 9Sanchez-Calderon L, Lopez-Bucio J, Chacon-Lopez A, Cruz- Ramirez A, Nieto-Jacobo B, Dubrovsky J G, Herrera-Estrella L. Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiol, 2005, 46:174-184.
  • 10Bednarz C W, Oosterhuis D M, Evans R D. Leaf photosynthesis and carbon isotope discrimination of cotton in response to potassium deficiency. Environ Exp Bot, 1998, 39:131-139.

共引文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部