期刊文献+

3D生物描绘孔结构可控钙磷硅基骨修复支架的生物力学性能 被引量:2

Biomechanical properties of calcium silicate / calcium phosphate cement scaffolds with controllable porous structure for bone repair by 3D bioplotting
下载PDF
导出
摘要 目的设计和制备新型钙磷硅基骨修复支架,研究其在不同外力作用下体外生物力学性能。方法以自固化磷酸钙骨水泥(calcium phosphate cement,CPC)、介孔硅酸钙(mesporous calcium silicate,MCS)为原料,通过3D生物描绘技术构建孔径分别为350、500μm的MCS/CPC复合支架。采用扫描电镜观察支架表面形貌;分别通过万能力学试验机和动态力学分析仪,考察具有不同孔道结构MCS/CPC支架的抗压力学性能和不同频率动态周期性载荷作用下的力学性能。结果通过3D生物描绘技术能够实现对钙磷硅基骨修复支架内部孔道结构的可控制备。孔径为350μm的MCS/CPC支架具有较高的抗压力学强度[(9.80±0.39)MPa]和抗压模量[(132.50±4.30)MPa];此外,载荷频率在1—100Hz范围内,孔径为350μm的支架具有较高的储能模量。结论通过3D生物描绘技术制备的孔径为350μm的MCS/CPC复合支架不仅具有规则的连通孔道,还具有较高的抗压力学性能,能在动态载荷作用下保持结构稳定,适合作为一种新型的骨缺损修复材料。 Objective To design and fabricate novel mesoporous calcium silicate/calcium phosphate cement (MCS/CPC) scaffolds for bone repair and investigate their in vitro biomechanical properties under different exter- nal forces. Methods MCS and CPC in certain proportion were mixed to form plotting material, and the composite MCS/CPC scaffolds with pore size of 350μm and 500 μm were fabricated by 3D bioplotting technique, respective- ly. Surface topographies of the scaffolds were observed by scanning electron microscope (SEM). The compres- sive strength and mechanical properties of the scaffolds under dynamic cyclic loads at different frequencies werestudied through universal mechanical testing machine and dynamic mechanical analysis instrument. Results MCS/CPC scaffolds with controllable macroporous structures could be fabricated by 3D bioplotting technique. Scaffolds with pore size of 350 μm had higher compressive strength [ (9.8 -±0.39) MPa] and compressive modulus [ (132.5 ±4.3) MPa]. In addition, at the loading frequency of 1-100 Hz, scaffolds with pore size of 3,50 μ had a higher storage modulus. Conclusions MCS/CPC scaffolds with pore size of 350 μm fabricated by 3D bioplotting technique possess not only regular pore connectivity and high compressive strength, but also structural stability under dynamic loads, which are promising as novel biomaterials for bone repair.
出处 《医用生物力学》 CAS CSCD 北大核心 2015年第4期350-354,共5页 Journal of Medical Biomechanics
基金 国家重大科学研究计划(2011CB013300,2012CB933604) 国家自然科学基金项目(81171707) 上海市卫生系统重要疾病联合攻关项目(2013ZYJB0501) 上海市教委重点学科建设基金(J50206)
关键词 骨修复 介孔材料 硅酸钙 3D生物描绘 力学性能 Bone repair Mesoporous material Calcium silicate 3D bioplotting Mechanical properties
  • 相关文献

参考文献23

  • 1Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaf- folds and osteogenesis E J]. Biomaterials, 2005, 26 (27) : 5474 -5491.
  • 2Mastrogiacorno M, Scaglione S, Martinetti R, et al. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics [ J]. Bioma- terials, 2006, 27(17) : 3230-323?.
  • 3Jones AC, Arns CH, Hutmacher DW, et aL The correla- tion of pore morphology, interconnectivity and physical properties of 3 D ceramic scaffolds with bone ingrowth I J]. Biomaterials, 2009, 30 (7): 1440-1451.
  • 4Rubin C, Turner AS, 15ain S, et al. Anabolism: Low me- chanical signals strengthen long bones [J]. Nature, 2001, 412 (6847) : 603-604,.
  • 5戴尅戎.力学生物学在骨与软骨研究中的应用[J].中华骨科杂志,2006,26(6):429-431. 被引量:37
  • 6李彬,张西正,张永亮,郭勇,李瑞欣.骨组织工程中的应力与生长[J].国外医学(生物医学工程分册),2003,26(3):129-134. 被引量:5
  • 7李刚,夏和桃.应力与骨组织再生的生物学和生物力学基础[J].中华创伤骨科杂志,2013,15(10):871-875. 被引量:3
  • 8Ruff C, Holt B, Trinkaus E. Who' s afraid of the big bad Wolff? "Wolff' s law" and bone functional adaptation E J ]. Am J Phys Anthropol, 2006, 129 (4) : 484498.
  • 9Barralet JE, Grover L, Gaunt T, et aL Preparation of macroporous calcium phosphate cement tissue engineering scaffold I J]. Biomaterials, 2002, 23 (15): 3063-3072.
  • 10Deville S. Freeze-casting of porous ceramics: A review of current achievements and issues ~ Jl. Adv Eng Mater, 2008, lO (3): 155-169.

二级参考文献67

  • 1戴尅戎.力学生物学在骨与软骨研究中的应用[J].中华骨科杂志,2006,26(6):429-431. 被引量:37
  • 2夏和桃.肢体延长的基础进展及临床有关问题[J].中国矫形外科杂志,2007,15(8):605-612. 被引量:47
  • 3Nagatomi J ,Arulanandam BP, Metzger DW,et al. Frequency and duration-dependent effects of cyclic pressure on select bone cell functions [J]. Tissue Eng,2001,7 (6) : 717-728.
  • 4Pavlin D,Zadro R. Temproal pattern of stimulation of osteoblast-associated genes during mechanically-induced osteogenesis in vivo:early response of osteocalin and type I collagen[J]. Connect Tissue Res, 2001,42(2):135-148.
  • 5Akhouayri O, Lafage MH, Rattner A,et al. Effect of static or dynamic mechanical stresses on osteoblast phenotype expression in three-dimensional contractile collagen gels[J]. Cellular Biochemistry, 1999,76 : 217-230.
  • 6Jee Wss, In : Weiss L. The skeletal tissues [M]. Cell and Tissue Bilolgy. Munich: Urban and Schwarzenberg, 1998. 231-253.
  • 7Kaspar D,Seidl W,Claes L,et al. Cyclic dynamic strain effects proliferation and metabolic activity of human osteoblast[C]. 12th Conference of the European Society of Biomechanics,Dublin. 2000. 50-51.
  • 8Cillo JE,Gassner R,Koepsel RR,et al. Growth factor and cytokine gene expression In mechanically strained human osteoblast-like cells: Implicaltions for distraction osteogenesis[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod ,2000,90(2) : 147-154.
  • 9Kletsas, Dimitris, Basdra, et al. Effect of proteinkinase Inhibitor on the stretch-elicited c-fos and c-jun up-regulation In human PDL osteoblast-like cells [J]. Cell Physiol, 2002,190(3) : 313-321.
  • 10Peverali FA, Basdra EK, Papaveassiliou AG, et al.Stretch-medated activation of selective MAPK subtypes and potentiation of AP-1 binding In human osteoblastic cells[J]. Mol Med ,2001,7(1) :68-78.

共引文献42

同被引文献4

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部