期刊文献+

基于EKF的摄像机-IMU相对姿态标定方法 被引量:2

EKF-BASED RELATIVE POSE CALIBRATION FOR CAMERA AND IMU
下载PDF
导出
摘要 摄像机与惯性传感器之间的相对姿态标定是视觉-惯性混合跟踪器的关键技术之一,是混合跟踪器进行数据融合获得鲁棒姿态输出的前提。提出一种新颖的基于扩展卡尔曼滤波器EKF(Extended Kalman Filter)的摄像机-惯性测量单元IMU(Internal Measurement Unit)相对姿态标定方法。该方法通过构建基于刚体运动学的过程模型和基于摄像机外参数的测量模型,估计摄像机与惯性传感器的相对位置和方向。初步实验结果显示,所提出的标定方法不仅能够标定6 DOF相对姿态,标定操作更简易快速,而且在系统初始误差较大和非线性噪声较大的条件下,该方法仍然能够精确地获得摄像机与IMU之间的相对姿态。 Calibration of relative pose between camera and inertial sensors is one of the key techniques of vision-inertia hyper tracker, and is also the precondition of hyper tracker getting robust pose output through data fusion. Based on the extended Karman filter ( EKF), we introduce a novel method of camera-IMU relative pose calibration method. It estimates the relative position and direction of camera and inertial sensors by constructing a transition model based on rigid body motion theory and a measurement model based on camera external parameters. Primary experimental results show that the proposed calibration method can calibrate 6 DOF relative pose by more simple and quick calibration operation, besides, it can also precisely get the relative pose between camera and IMU even there are large initial systematic errors and serious nonlinear noises.
出处 《计算机应用与软件》 CSCD 2015年第7期155-158,203,共5页 Computer Applications and Software
基金 中国工程物理研究院科学技术发展基金项目(2012B0403068) 中国工程物理研究院预研课题
关键词 摄像机 惯性测量单元 卡尔曼滤波器 相对姿态标定 特征点匹配 Camera Inertial measurement unit (IMU) Kalman filter Relative pose calibration Feature points matching
  • 相关文献

参考文献14

  • 1Carmigniani J,Furht B,Anisetti M,et al.Augmented reality technologies,systems and applications[J].Multimedia Tools and Applications,2011,51:341-377.
  • 2Lang P,Pinz A.Calibration of hybrid vision/inertial tracking systems[C]//Proc.of the 2nd InerV is,Barcelona,Spain,Apr,2005.
  • 3Lobo J,Dias J.Relative pose calibration between visual and inertial sensors[J].The International Journal of Robotics Research,2007,26(6):561-575.
  • 4Hol J D.Pose estimation and calibration algorithms for vision and inertial sensors[D].Linkping,Swedish:Department of Electrical Engineering,Linkping University,2008.
  • 5Mirzaei F M,Roumeliotis S I.A Kalman filter-based algorithm for IMUcamera calibration:observability analysis and performance evaluation[J].IEEE Transactions on Robotics,2008,22(5):1143-1156.
  • 6Kelly J,Sukhatme G S.Fast relative pose calibration for visual and inertial sensors[C]//11th International Symposium on Experimental Robotics.Berlin,Germany:2009:515-524.
  • 7杨浩,张峰,叶军涛.摄像机和惯性测量单元的相对位姿标定方法[J].机器人,2011,33(4):419-426. 被引量:4
  • 8罗斌,王涌天,沈浩,吴志杰,刘越.增强现实混合跟踪技术综述[J].自动化学报,2013,39(8):1185-1201. 被引量:55
  • 9秦永元,张洪钺,汪叔华.卡尔曼滤波器与组合导航原理[M].西安,西北工业大学出版社,2012.
  • 10Wikipedia.Tait-Bryan angles[EB/OL].[2013-11-07].http://en.wikipedia.org/wiki/Tait-Bryan_angles.

二级参考文献22

  • 1DeSouza G N, Kak A C. Vision for mobile robot navigation: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(2): 237-267.
  • 2Kanade T, Amidi O, Ke Q. Real-time and 3D vision for au- tonomous small and micro air vehicles[C]//IEEE International Conference on Decision and Control. Piscataway, NJ, USA: IEEE, 2004: 1655-1662.
  • 3Moeslund T B, Hilton A, Kriiger V. A survey of advances in vision-based human motion capture and analysis[J]. Computer Vision and Image Understanding, 2006, 104(2/3): 90-126.
  • 4Welch G F. HISTORY: The use of the Kalman filter for human motion tracking in virtual reality[J]. Presence: Teleoperators and Virtual Environments, 2009, 18(1): 72-91.
  • 5Lang P, Pinz A. Calibration of hybrid vision/inertial tracking systems[C]//Proceedings of the 2nd InerVis. Barcelona, Spain: 2005.
  • 6Lobo J, Dias J. Relative pose calibration between visual and inertial sensors[J]. International Journal of Robotics Research, 2007, 26(6): 561-575.
  • 7Mirzaei F M, Roumeliotis S I. A Kalman filter-based algorithm for IMU-camera calibration: Observability analysis and per- formance evaluation[J]. IEEE Transactions on Robotics, 2008, 24(5): 1143-1156.
  • 8Kelly J, Sukhatme G S. Fast relative pose calibration for visual and inertial sensors[C]//1 lth International Symposium on Ex- perimental Robotics. Berlin, Germany: Springer-Verlag, 2009: 515-524.
  • 9Kelly J, Sukhatme G S. Visual-inertial simultaneous localiza- tion, mapping and sensor-to-sensor self-calibration[C]//IEEE International Symposium on Computational Intelligence in Robotics and Automation. Piscataway, NJ, USA: IEEE, 2009: 360-368.
  • 10Julier S J, Uhlmann J K. A new extension of the Kalman fil- ter to nonlinear systems[C]//Proceedings of the SPIE: vol.3068. Bellingham, WA, USA: SPIE, 1997: 182-193.

共引文献57

同被引文献8

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部