期刊文献+

基于交替方向低秩模型的运动目标检测算法

A MOVING OBJECT DETECTION ALGORITHM BASED ON ALTERNATING DIRECTION AND LOW-RANK MODEL
下载PDF
导出
摘要 不同于传统运动目标检测算法,引入背景低秩和前景稀疏性,提出基于交替方向低秩模型的运动目标检测算法。首先在鲁棒主成分分析法建模的基础上添加背景噪声模型,在低秩背景模型中引入全变差范数并结合核范数进行约束。考虑视频矩阵前景图像的稀疏性,接着利用马尔可夫随机场和图建立前景模型。然后采用交替方向法实现函数的优化求解。最后对算法结构进行改进,实现视频运动目标的在线检测。通过对两种数据集进行实验结果分析,与其他算法对比,该算法在满足在线的基础上具有很好的检测效果,特别是在动态背景及复杂前景上具有很强的鲁棒性。 Different from traditional moving object detection algorithm, we propose a moving object detection algorithm by introducing background low-rank and foreground sparsity, which is based on alternating direction and low-rank model. First, it adds a background noise model based on modelling the robust principal component analysis ( RPCA), introduces total variation ttorm to low-rank background model and combines nuclear norm to constrain. Secondly, it builds the foreground model by using Markov random field and graph with the consideration of the sparsity of foreground image in video matrix. Then, it uses alternating direction method to realise the optimised solution of the function. At last, we improve algorithm' s structure to implement the online detection of moving video objects. Analyses on the results of experiments on two different datasets tell that based on online satisfaction this algorithm has better detection effect compared with other algorithms, in particular, it has strong robustness in dynamic background and complex foreground.
出处 《计算机应用与软件》 CSCD 2015年第7期167-172,共6页 Computer Applications and Software
基金 国家自然科学基金项目(51365017) 江西省科技厅青年科学基金项目(20132bab211032) 江西省教育厅青年科学基金项目(gjj13385)
关键词 低秩模型 交替方向法 目标检测 子图割 运动分割 Low-rank model Alternating direction method Object detection Sub-graph cut Motion segmentation
  • 相关文献

参考文献18

  • 1Yilmaz A,Javed O,Shah M.Object tracking:A survey[J].Acm Computing Surveys(CSUR),2006,38(4):13-44.
  • 2Papenberg N,Bruhn A,Brox T.Highly accurate optic flow computation with theoretically justified warping[J].International Journal of Computer Vision,2006,67(2):141-158.
  • 3Wren C R,Azarbayejani A,Darrell T,et al.Pfinder:real-time tracking of the human body[J].Pattern Analysis and Machine Intelligence,IEEE Transactions on,1997,19(7):780-785.
  • 4Stauffer C,Grimson W E L.Adaptive background mixture models for real-time tracking[C].Computer Vision and Pattern Recognition,1999.
  • 5Elgammal A,Duraiswami R,Harwood D,et al.Background and foreground modeling using nonparametric kernel density estimation for visual surveillance[J].Proceedings of the IEEE,2002,90(7):1151-1163.
  • 6Kim K,Chalidabhongse T H,Harwood D,et al.Background modeling and subtraction by codebook construction:Image Processing[C].International Conference on,2004.
  • 7Sheikh Y,Shah M.Bayesian modeling of dynamic scenes for object detection[J].Pattern Analysis and Machine Intelligence,2005,27(11):1778-1792.
  • 8Maddalena L A P A.A self-organizing approach to background subtraction for visual surveillance applications[J].Image Processing,IEEE Transactions on,2008,17(7):1168-1177.
  • 9Barnich O,Van Droogenbroeck M.ViB e:A Universal Background Subtraction Algorithm for Video Sequences[J].Image Processing,2011,20(6):1709-1724.
  • 10Xiaowei Z,Can Y,Yu W.Moving Object Detection by Detecting Contiguous Outliers in the Low-Rank Representation[J].Pattern Analysis and Machine Intelligence,2013,35(3):597-610.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部