期刊文献+

内容共享环境中基于隐私保护的图像搜索方案 被引量:1

IMAGE SEARCH SCHEME IN CONTENT SHARING ENVIRONMENTS BASED ON PRIVACY PROTECTION
下载PDF
导出
摘要 Flicker或YouTube等现代内容共享环境包含大量私人资源,这些资源可能非常敏感,甚至泄露用户大量隐私信息。为了支持用户在共享照片时作出隐私决策,提出一种隐私图像自动检测及隐私图像搜索技术。首先,基于经过人工评估的大量Flickr照片,对隐私分类器进行训练和学习,将图像文本元数据和多种视觉特征结合起来,然后,利用基于线性支持向量机的分类模型搜索隐私照片,并且使查询结果多样化,为用户更好地提供隐私和公共内容。最后,大规模分类实验验证了基于不同视觉和文本特征的隐私图像检测性能,另外,基于查询结果排名的用户评估结果也证明了该算法的可行性。 Modern content sharing environments such as Flicker or YouTube contain a large amount of privacy resources. These resources can be highly sensitive, even might disclose a great deal of users' privacy information. In order to support users in making privacy decisions in the context of image sharing, we propose a technique of private images automatic detection and search. First, we arrange the privacy classifi- ers to be trained and learnt based on a large set of manually assessed Flicker photos, thus combines the textual metadata of images with a vari- ety of visual features. Then, we employ the linear SVM-based classification models to search privacy photos, and diversify the query results so as to provide users with a better coverage of privacy and public contents. Finally, the large-scale classification experiments verify the detection performance of privacy image based on different visual and textual features. Besides, the result of user evaluation based on query result rank- ing also demonstrates the feasibility of our approach.
作者 刘静 王化喆
出处 《计算机应用与软件》 CSCD 2015年第7期207-211,227,共6页 Computer Applications and Software
基金 国家统计局统计科研计划项目(2012LY056) 2013年陕西省教育厅科研计划项目(2013JK1194)
关键词 内容共享环境 隐私 检测 图像搜索 文本特征 多样化 支持向量机 Content sharing environments Privacy Detection Image search Textual features Diversify Support vector machine ( SVM )
  • 相关文献

参考文献19

二级参考文献67

  • 1Hay M, Miklau G, Jensen D, et al. Anonymizing social networks [R]. 07-19. University of Massachusetts Amherst, 2007.
  • 2Liu K, Terzi E. Towards identity anonymization on graphs [C]// Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data (SIGMOD' 08). New York, NY, USA, ACM Press, 2008 : 93.
  • 3Liu Kun, Das K, Grandison T, et al. Privacy preserving data analysis on graphs and social networks[C]//Kargupta H, Han J, Yu P, et al. , eds. Nexteneration Data Mining. CRC Press, 2008.
  • 4Zheleva E,Getoor L. Preserving the privacy of sensitive relationships in graph data[C]//Proeeedings of the 1st ACM SIGKDD Workshop on Privacy, Security, and Trust in KDD(PinKDD' 07). 20071153-171.
  • 5Han Jia-wei, Kamber M, Data Ming. Concepts and Techniques(第二版)[M].范明,阵小峰,译.北京:机械:工业出版社,2007:255-259.
  • 6Zhou Bin, Pei J ian, Luk W-S. A Brief Survey on Anonymization Techniques for Privacy Preserving Publishing of Social Network Data[J]. ACM SIGKDD Explorations, ACM Press, 2008, 10 (2) : 12-22.
  • 7Zhou B, Pei J. Preserving Privacy in Social Networks against Neighborhood Attacks[C]//IEEE International Conference on Data Engineering(ICDE). 2008 : 506-515.
  • 8Byun J W, Kamra A, Bertino E, et al. Efficient k-Anonymization using Clustering Techniques [C] // International Conference on Database Systems for Advanced Applications(DASFAA). 2007:188-200.
  • 9Blake E K C, Merz C J. UCI repository of machine learning databases[EB/OL], http//www, ics. uci. edu/-mlearn/MLReposi- tory. html, 1998.
  • 10Bapna S, Gangopadhyay A. A wavelet-based approach to pre- serve privacy for classification mining[J]. Decision Sciences, 2006, 37(4): 623-642.

共引文献100

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部