期刊文献+

一种有效的基于格的盲环签名方案 被引量:1

AN EFFICIENT LATTICE-BASED BLIND RING SIGNATURE SCHEME
下载PDF
导出
摘要 盲环签名可保护签名者和签名持有者的个人隐私,故其在个人隐私保护领域能发挥重要作用。根据Gentry和Peikert等提出的基于格的签名方案构造一个基于格的盲环签名方案,并在随机预言模型下基于选择目标求逆问题CTTI(Chosen target trapdoor inversion)证明了该方案满足在固定环攻击下的one-more不可伪造性,此外,还证明了该方案具备无条件匿名性和盲性。 Blind ring signatures can protect the privacies of signer and signature-holder, so it plays an important role in privacy protection applications. We constructed a lattice-based blind ring signature scheme according to the lattice-based signature scheme proposed by Gentry and Peikert et al. , and proved in random oracle model and based on chosen target trapdoor inversion (CTYI) problem that the proposed scheme satisfies the bne-more unforgeability under fixed-ring attacks. Moreover, we also proved the unconditional anonymity and the blindness of the proposed scheme.
出处 《计算机应用与软件》 CSCD 2015年第7期301-304,共4页 Computer Applications and Software
基金 河北省高等学校科学技术研究项目(ZD2010102)
关键词 盲环签名 可证明安全 随机预言模型 不可伪造性 Blind ring signature Provable security Random oracle model Unforgeability Lattices
  • 相关文献

参考文献13

  • 1Gentry C,Peikert C,Vaikuntanathan V.Trapdoors for hard lattices and new cryptographic constructions[C]//Proceedings of the 40th annual ACM symposium on theory of computing(STOC'08).New York:ACM Press,2008:197-206.
  • 2Cash D,Hofheinz D,Kiltz E,et al.Bonsai tree,or how to delegate a lattice basis[C]//Proceedings of the Eurocrypt 2010,LNCS 6110.Berlin:Springer-Verlag,2010:523-552.
  • 3Bansarkhani R E,Cabarcas D,Kuo P,et al.A selection of recent lattice-based signature and encryption schemes[J].Tatra Mountains Mathematical Publications,2012,53(1):81-102.
  • 4Rivest R L,Shamir A,Tauman Y.How to leak a secret[C]//Proceedings of the Asiacrypt 2001,LNCS 2248.Berlin:Springer-Verlag,2001:552-565.
  • 5Bender A,Katz J,Morselli R.Ring signatures:stronger definitions,and constructions without random oracles[C]//Proceedings of the third theory of cryptography conference(TCC’06),LNCS 3876.Berlin:Springer-Verlag,2006:60-79.
  • 6Wang J,Sun B.Ring signature schemes from lattice basis delegation[C]//Proceedings of the 13th international conference on information and communications security,LNCS 7043.Berlin:Springer-Verlag,2011:15-28.
  • 7Chaum D.Blind signatures for untraceable payments[C]//Proceedings of the Crypto 1982.New York:Plenum Press,1983:199-203.
  • 8Pointcheval D,Stern J.Security arguments for digital signatures and blind signatures[J].Journal of Cryptology,2000,13(3):361-396.
  • 9Ruckert M.Lattice-based blind signatures[C]//Proceedings of the Asiacrypt 2010,LNCS 6477.Berlin:Springer-Verlag,2010:413-430.
  • 10王凤和,胡予濮,王春晓.基于格的盲签名方案[J].武汉大学学报(信息科学版),2010,35(5):550-553. 被引量:8

二级参考文献11

  • 1Chaum D. Blind Signatures for Untraceable Payments[C]. Crypto 1982, California,1983.
  • 2Camenisch J,Koprowski M, Warinschi B. Effcient Blind Signatures Without Random Oracles[C]. Security in Communicalion Networks, Amalfi, Italy, 2004.
  • 3Okamoto T. Efficient Blind and Partially Blind Signatures Without Random Oracles[C]. Theory of Cryptography Conference (TCC) 2006, LNCS 3876, New York,2006.
  • 4Bresson E, Monnerat J, Vergnaud D. Separation Results on the One More Computational Problems [C]. RSA Conference (CT-RSA) 2008, San Francisco, CA,2008.
  • 5Shor P W. Polynomial time Algorithm for Prime Factorizeation and Discrete Logarithm on a Quan rum Computer [J]. SIAM Journal on Computing, 1997, 26(5):1 484 -1 509.
  • 6Lyubashevsky V, Micciancio D. Asymptotically Efficient Lattice Based Digital Signature[C].TCC2008, LNCS 4948, New York,2008.
  • 7Regev O. On Lattice, I.earning with Errors, Random Linear Codes, and Cryptography[C].STOC'05, Baltimore, 2005.
  • 8Gentry C, Peikert C, Vaikuntanathan V . Trapdoors for Hard Lattices and New Cryptographic Constructions[C]. STOC2008, Victoria, British Columbia, 2008.
  • 9Atwen J, Peikert C. Generating Shorter Bases for Hard Random Lattices[C].STACS, Freiburg, 2009.
  • 10Ruckert M. Lattice-based Blind Signatures[OL]. http ://eprint. iaer. org. 2008/322,2008.

共引文献7

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部