期刊文献+

Ge-Se基硫系玻璃在通信波段的三阶非线性与光谱特性研究 被引量:6

Third-order optical nonlinearity at communication wavelength and spectral characteristics of Ge-Se based chalcogenide glasses
下载PDF
导出
摘要 在Ge-Se二元体系中引入相同摩尔比的Ga,Sn,Sb,Te四种元素,使用熔融淬冷法制备了一系列硫系玻璃.利用吸收光谱获得了不同元素引入下硫系玻璃能带结构的变化,并结合拉曼光谱详细研究了产生光学特性变化的微观表征.使用Z扫描方法测试了各个硫系玻璃样品在1550 nm波长下的三阶非线性参数,发现加入Sn的玻璃的三阶非线性折射率n2最大,达到了6.36×10 17m2/W,且其品质因子大于23,表明Sn引入能够增强硫系玻璃在通信波段的三阶非线性,这一研究结果为以后的高性能红外器件的设计及制备提供了一种环保且性能优良的候选材料. A series of Ge-Se chalcogenide glasses incorporated with same molar percentage of Ga, Sn, Sb and Te are synthesized by melt-quenching method. The variations of optical band gaps doped with different elements are investigated by absorption spectra, and the relationship of optical band gap with glass network structure is studied by Raman spectra The results show that the doping of heavy metallic elements(except Ga) could reduce the optical band gap of the Ge-Se glass due to the decrease of the number of Se-Se chains or ring bonds. Third-order optical nonlinearities of the glasses are studied by femtosecond Z-scan method at a telecom wavelength of 1550 nm. The results show that the performance of third-order optical nonlinearity of the Ge-Se glass could be improved by doping the above-mentioned elements. By comparison, the Sn-doped Ge-Se glass has a maximum nonlinear refraction index(n2) of 6.36×10^-17m^2/W and a figure of merit of over 23. By combining the experimental results from Raman spectra, the enhancement of third-order optical nonlinearity after the introduction of Sn can be ascribed to the formation of Sn(Se1/2)4tetrahedra that enters into the main frame of Ge-Se glass and results in a stable Ge-Sn-Se network. Te doping could also remarkably enhance the n2 value of the Ge-Se glass, however, it could cause large two-photon absorption, leading to a poor value of figure of merit.The research result shows that chalcogenide glass in Ge-Sn-Se ternary system is an ideal candidate material for designing and fabricating infrared devices with high performance and environmental friendness.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第15期238-243,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61435009,61308094) 国家重点基础研究发展计划(973计划项目子课题)(批准号:2012CB722703) 宁波大学王宽诚幸福基金~~
关键词 非线性光学材料 硫系玻璃 红外和拉曼光谱 nonlinear optic materials chalcogenide glasses infrared and Raman spectra
  • 相关文献

参考文献20

  • 1Romanova E A, Kuzyutkina Y S, Konyukhov A I, Abdel- Moneim N, Seddon A B, Benson T M, Guizard S~ Mouskeftaras A 2014 Opt. Eng 53 1.
  • 2Ren J, Li B, Wagner T, Zeng H, Chen G 2014 Opt. Mater. 36 911.
  • 3Chen F F, Dai S X, Lin C G, Yu Q S, Zhang Q 2013 Opt Express 21 24847.
  • 4Chen F, Yu Q, Qiao B, Xu T, Dai S, Ji W 2015 J. Non- Cr'usf. Solids. 412 30.
  • 5Wang T, Gai X, Wei W, Wang R, Yang Z, Shen X, Mad- den S, Luther-Davies B 2014 Opt Mater Express 4 1011.
  • 6杨佩龙,戴世勋,易昌申,张培晴,王训四,吴越豪,许银生,林常规.中红外色散平坦硫系光子晶体光纤设计及性能研究[J].物理学报,2014,63(1):193-200. 被引量:6
  • 7Yu Y, Gai X, Wang T, Ma P, Wang R, Yang Z, Choi D Y, Madden S, Luther-Davies B 2013 Opt. Mater Express 3 1075.
  • 8Guo H, Chen H, Hou C, Lin A, Zhu Y, Lu S, Gu S, Lu M~ Peng B 2011 Mater. Res. Bull. 46 765.
  • 9Hou Y, Liu Q, Zhou H, Gao C, Qian S, Zhao X 2010 Solid State Commun. 150 875.
  • 10Petit L, Carlie N, Chen H~ Gaylord S~ Massera J, Boudebs G, Hu J, Agarwal A, Kimerling L, Richardson K 2009 J. Solid State Chem. 182 2756.

二级参考文献7

共引文献5

同被引文献78

  • 1金崇君,秦柏,杨森,秦汝虎.三角形复式晶格的光子带结构研究[J].光学学报,1997,17(4):409-413. 被引量:24
  • 2柏立岗.光致变色建筑玻璃的研制[J].建筑科学,2007,23(6):57-59. 被引量:2
  • 3Yablonovitch E. Inhibited spontaneous emission in solid- state Physics and electro -nics[J]. Physical Review Let- ters, 1987,58(20) : 2059-2062.
  • 4John S. Strong localization of photons in certain disorder- ed dielectric superlattices[J]. Physical Review Letters, 1987,58(23) :2486-2489.
  • 5Johnson S G, Fan S, Mekis A, et al. Multipole- cancella- tion mechanism for high-Q cavities in the absence of a complete photonic bandgap [J]. APPL, 2001,78 ( 22 ) : 3388-3390.
  • 6Benmerkhi A,Chemat M,Uchemat T, et al. Numerical op- timization of high-Q-factor photonic crystal microcavities with a graded air lattice[J]. Journal of the Optical Socie- ty of America B,2011,28(2) :336-341.
  • 7Scalora Michael, Dowling Jonathan P, Bowden Charles M, et al. Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials[J]. Physical re- view letters, 1994,73(10) : 1368-1371.
  • 8Pezeshki Hamed, Ahmadi Vahid. All-optical bistable swi- tching based on photonic crystal slab nanocavity using nonlinear Kerr effect[J]. Journal of Modern Optics, 2013, 60(2) : 103-108.
  • 9MENG Zi-ming, HU Yi-hua, WANG Chen, et al. Design of high-Q silicon-polymer hybrid photonic crystal nanobeam microcavi-ties for low-power and ultrafast all-optical switching[J]. Hotonicsand Nano Structures-Fundamentalsand Applications,2014,12(1) :83-92.
  • 10Bose Ranojoy, Sridharan Deepak, Kim Hyochul, et al. Low-photon-number optical switching with a single quan- tum dot coupled to a photonic crystal cavity[J]. Physical Review Letters,2012,108(22) :428-437.

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部