期刊文献+

液滴在梯度微结构表面上的铺展动力学分析 被引量:4

Spreading dynamics of liquid droplet on gradient micro-structured surfaces
下载PDF
导出
摘要 本文通过改变肋柱宽度和间距,构造了二级和多级梯度微结构表面,采用格子-Boltzmann方法对液滴在两种梯度表面上的铺展过程进行了研究,探析液滴运动的机理和调控方法.结果表明,在改变肋柱间距的二级梯度表面上,当液滴处于Cassie态时,接触角滞后大小与粗糙度梯度成正比关系;当液滴从Cassie态转换为Wenzel态或介于两者之间的不稳定态时,这一正比关系不再遵循.在改变肋柱宽度的二级梯度表面上,接触角滞后大小与粗糙度梯度始终成正比关系.在多级梯度表面上,随液滴初始半径增大,接触角滞后减小,但液滴平衡位置相较于初始位置偏离增大.对梯度微结构表面上液滴运动和接触角滞后的定量分析,可为实现梯度微结构表面液滴运动调控提供理论依据. Designed microtextured surfaces have shown promising applications in tuning the wettability of a liquid droplet on the surfaces and attracted great attention over the past decade; unfortunately, the effect of surface geometry on wetting properties is still poorly understood. In this work, two- and multi-stage pillar microtextures are designed to construct gradient surfaces by altering pillar width and spacing. Then, the multi-phase lattice-Boltzmann method(LBM) is used to investigate the wetting dynamics of a liquid droplet on the gradient surface. Results show that for the two-stage gradient surface with variable pillar spacing, the contact angle hysteresis is found to be proportional to the roughness gradient when droplet/surface system is in the Cassie-Baxter state. However, this proportional relation is no longer correct when the system is in the transition state between the Wenzel and Cassie-Baxter states. For the two-stage gradient surface with variable pillar spacing, the contact angle hysteresis always increases linearly with increasing roughness gradient.Results also show that when a larger droplet is placed on the multi-stage gradient surface, stronger droplet motion is observed due to the smaller contact angle hysteresis. The present LBM simulations provide a guideline for the design and manufacture of the microtextured surfaces to tune the droplet wettability and motion.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第15期383-390,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:51176010)资助的课题~~
关键词 液滴 微结构 铺展 接触角 liquid droplet micro-structural surface spreading contact angle
  • 相关文献

参考文献16

  • 1de Gennes P C~ 1985 Rev. Mod. Phys. 57 827.
  • 2Liang Z P, Wang X D, Duan Y Y, Min Q 2012 Colloids Surf. A 403 155.
  • 3Martin C P, Blunt M O, Pauliac-Vaujour E, Stannard A, Moriarty P, Vancea I, Thiele U 2007 Phys. Rev. Left. 99 116103.
  • 4Vancauwenberghe V, Marco P D, Brutin D 2013 Colloids Surf. A 432 50.
  • 5Pratap V, Moumen N, Subramanian R S 2008 Langmuir 24 5185.
  • 6Kakade B, Mehta R, Durge A, Kulkarni S, Pillai V 2008 Nano Lett. 8 2693.
  • 7Hong X, Gao X, Jiang L 2007 J. Am. Chem. Soc. 129 147.
  • 8Ichimura K, Oh S K, Nakagawa M 2000 Science 288 1624.
  • 9陆规 2014 博士学位论文 (北京:清华大学).
  • 10Erbil H Y, Demirel A L, Avci Y, Mert O 2003 Science 299 1377.

同被引文献39

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部