期刊文献+

基于启发式算法的乘用车物流运输计划问题研究 被引量:4

Research on the Logistics Transportation Problem of Vehicle Based on Heuristic Algorithm
原文传递
导出
摘要 主要解决的是乘用车整车物流的运输调度问题,通过对轿运车的空间利用率和运输成本进行优化,建立整数规划模型,设计了启发式算法,求解出了各种运输条件下的详细装载与运输方案. In this paper, the logistics transportation scheduling problem of passenger car was researched firstly. Based on the analysis of each problem, optimization goal is the established. In order to maximize space utilization ratio of the trailer and reduce the cost of vehicle logistics distribution, the double objective integer programming model is constructed. To solve the optimal problem, heuristic algorithm is adopted accordingly. Finally, the optimal loading and transport plan is obtained for all demand.
出处 《数学的实践与认识》 北大核心 2015年第15期89-100,共12页 Mathematics in Practice and Theory
关键词 整数规划 分支定界法 经验阈值 启发式调整优化 排样算法 integer programming branch and bound empirical threshold heuristic adjustment and optimization layout algorithm
  • 相关文献

参考文献2

二级参考文献12

  • 1杨鼎强,王晨.受位置约束的有色装箱问题[J].计算机工程与设计,2006,27(20):3864-3866. 被引量:2
  • 2Liu C L, James W. Scheduling Algorithms for multiprogramming in a hard-real-time environment[J]. Journal of the Association for Computing Machinery, 1973,20 : 46-61.
  • 3Cho H, Ravindran B, Jensen E D. An Optimal Real-Time Scheduling Algorithm for Multiprocessors [C]. 27th IEEE International Real-Time Systems Symposium, 2006 : 101-110.
  • 4Kashyap S R,Khuller S. Algorithms for non-uniform size data placement on parallel disks[J]. Algorithms, 2006,60 : 144-167.
  • 5Xavier E C,Miyazawa F K. The class constrained bin packing problem with applications to video on demand[J]. Theoretical Computer Science, 2008,393 : 240-259.
  • 6Shachnai H, Tamir T. Polynomial time approximation schemes for class-constrained packing problems [J]. Journal of Scheduling, 2001,4: 313-338.
  • 7Epstein L, Imreh C, Levin A. Class constrained bin covering [J]. Theory of Computer System, 2010,46 : 246-260.
  • 8Xavier E C, Miyazawa F K. A one-dimensional bin packing problem with shelf divisions [J]. Discrete Applied Mathematics, 2008,156 : 1083-1096.
  • 9Marques F P, Arenales M. The constrained compartmentalized knapsack problem [J]. Computer and Operations Research, 2007,34:2109-2129.
  • 10HotoR, Arenales M, Maculan N. The one dimensional compartmentalized cutting stock problem: a case study. European[ J ]. Journal of Operational Research, 2007, 183 : 1183-1195.

共引文献41

同被引文献35

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部