期刊文献+

基于动态剪枝算法的神经网络预测模型 被引量:2

ANN Forecast Model Based on Dynamic Pruning Algorithm
原文传递
导出
摘要 提出一种针对径向基函数网络动态剪枝算法,该方法根据统计贡献度动态确定核函数最优数量,在递归估计参数的同时根据核函数贡献度的大小动态消除冗余节点,以达到最佳网络结构.利用中国月度信贷数据进行实证分析表明,新提出的模型与SARIMA和SVR等其他基准模型相比,具有更好的预测稳健性和准确性. A new method for pruning RBF network is introduced. Networks are selected based on the Kernel function's statistical contribution to the overall performance of the network, and redundant nodes can be deleted dynamically according to the statistical contribution. The forecasting abilities of this method are compared with SARIMA and SVR approaches based on empirical RMB monthly China loan data series. The results show that the proposed method has the strongest forecast ability among all methods.
作者 张瀛
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2015年第3期313-319,共7页 Journal of Fudan University:Natural Science
基金 国家自然科学基金面上项目(71173043) 上海市教育委员会科研创新项目(11ZS09)
关键词 统计贡献度 自回归单整移动平均季节模型 支持向量回归 statistical contribution SARIMA support vector regression
  • 相关文献

参考文献17

  • 1Clements M P, Fred J, Herman O S. An evaluation of the forecasts of the federal reserve: A pooled approach [J]. Journal o J Applied Econometrics, 2007,22(1) : 121-136. model [J]. Journal of Applied Econometric.g, 2010,25(2) : 720-754.
  • 2Edge R M, Michael T K, Jean P L. A comparison of forecast performance between federal reserve staf forecasts, Simple redueed-{orm models, and a D-E.
  • 3Cassino V, Misich P, Barry J. Forecasting the demand of currency [J]. Reserve Bank Bulletin, 1997. 60(1).. 27-33.
  • 4Chatfield C. Time-series lorecasting[M]. Boca, Raton, London, New York. Washington, D. C: Chapman and Hall/CRC Press, 2000.
  • 5Balestrassi P P, Popova E, Paiva A P, et al. Design of experiments on neural network's training for nonlinear lime series forecasting [J]. Neurocomputing, 2009,72(4): 1160-1178.
  • 6Haykin S. Neural networks. A comprehensive foundation [M]. Englewood Cliffs, NJ: Prentice Hall, 1998.
  • 7Platt J. A resource-allocating network for function interpolation [J]. Neurocomputing, 1991,43(3) : 213- 225.
  • 8Mozer M C , Smolensky P. Skeletonization: A technique for trimming the fat from a network va relevance assessment, fn advances in neural inform [J]. Processing Syst, 1988(2): 107-115.
  • 9Huang G B, Saratchandran P, Sundararajan N. An efficient sequential learning algorithm for growing and pruning RBF networks [J]. IEEE Transactions on Systems Man and Cybernetics, 2004, 34 (6): 2284-2292.
  • 10Maia A L S, Carvalho F A, Ludermir T t3. Forecasting models for interval-valued time series [J]. Neurocomputing, 2008,71(16-!8) : 3344-3352.

同被引文献9

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部