Supercritical Elliptic Equation in Hyperbolic Space
Supercritical Elliptic Equation in Hyperbolic Space
摘要
In this paper, we study the following semi-linear elliptic equation-ΔHnu=|u|p-2u,in the whole Hyperbolic space Hn, where n ≥3, p 〉 2n/(n -2). We obtain some regular- ity results for the radial singular solutions of problem (0.1). We show that the singular
参考文献17
-
1Emden V. R., Gaskugeln, Anwendungen der Mechanichen Warmentheorie auf Kosmologie und Meteorologische Probleme. Chap. XII, Teubner, Leipzig, 1907.
-
2Fowler R. H., Futher studies of Emden's and similar differential equations. Quart. J. Math. 2 (1931), 259-288.
-
3Gidas B., Spruck J., Global and local behavior of positive solutions of nonlinear elliptic equa- tions. Comm. Pure Appl. Math. 34 (1981), 525-598.
-
4Lane J. H., In the theoretical temperature of the Sun under the hypotheis of a gaseous mass maintaining ots volume by its interval heat and depending on the laws of gases known of terrestrial experiment. Amer. J. Sci. 2d Ser. 50 (1869), 57-74.
-
5Pacard F., Partial regularity for weak solutions of a nonlinear elliptic equations. Manuscripata Math. 79 (1993), 161-172.
-
6Rupflin M., Struwe M., Supercritical elliptic equations. Adv. Nonl. Anal. 12 (2012), 877-887.
-
7Gidas B., Ni W. M. and Nirenberg L., Symmetry and related properties via the maximum priniciple. Comm. Math. Phys. 68 (1979), 209-243.
-
8Gidas B., Ni W. M. and Nirenberg L., Symmetry of positive solutions of nonlinear elliptic equations in RN. Adv. Math. Suppl. Stud. 7A (1981), 369-402.
-
9Kumaresan S., Prajapat J., Analogue of Gidas-Ni-Nirenberg result in hyperbolic space and sphere. Indiana Univ. Math. J. 51 (2002), 37-51.
-
10l~Iancini G., Sandeep K., On a semilinear elliptic equaition in HN. Ann. Sc. Norm. Super. Pisa CI. Sci. 7 (2008), 635-671.
-
1XU Hong-wei1 ZHAO En-tao2 Center of Mathematical Sciences,Zhejiang University,Hangzhou 310027,China.Complete hypersurfaces in a 4-dimensional hyperbolic space[J].Applied Mathematics(A Journal of Chinese Universities),2009,24(3):370-378.
-
2ZHU Xiaobao.A Singular Trudinger-Moser Inequality in Hyperbolic Space[J].Journal of Partial Differential Equations,2015,28(1):39-46.
-
3赵培标,宋鸿藻.Quasi- Einstein Hypersurfaces in a Hyperbolic Space[J].Chinese Quarterly Journal of Mathematics,1998,13(2):49-52. 被引量:1
-
4Zhaobo HUANG.The Infinite Dimensional Hyperbolic Space H~∞ Does Not Have Property A[J].Chinese Annals of Mathematics,Series B,2010,31(4):491-496.
-
5Li Ma Department of Applied Mathematics, Tsinghua University, Beijing 100084, P. R. China.On Minimal Graph Evolutions in the Hyperbolic Space[J].Acta Mathematica Sinica,English Series,1999,15(3):371-374.
-
6邱红兵.AN ESTIMATE FOR THE MEAN CURVATURE OF SUBMANIFOLDS CONTAINED IN A HOROBALL[J].Acta Mathematica Scientia,2013,33(6):1561-1570.
-
7苏变萍,舒世昌,Yi Annie Han.HYPERSURFACES WITH CONSTANT MEAN CURVATURE IN A HYPERBOLIC SPACE[J].Acta Mathematica Scientia,2011,31(3):1091-1102. 被引量:1
-
8Mohamed JLELI.STABILITY OF CONSTANT MEAN CURVATURE HYPERSURFACES OF REVOLUTION IN HYPERBOLIC SPACE[J].Acta Mathematica Scientia,2013,33(3):830-838. 被引量:1
-
9TANG JiashanDepartment of Mathematics, Beijing Normal University, Beijing 100875, China,Institute of Mathematics, Shantou University, Shantou 515063, China.An asymptotic result of super-Brownian motion on hyperbolic space[J].Chinese Science Bulletin,1997,42(15):1240-1244. 被引量:3
-
10Bin QIAN.Asymptotic Estimates on the Time Derivative of Φ-entropy on Riemannian Manifolds[J].Acta Mathematica Sinica,English Series,2014,30(4):609-618.