期刊文献+

The ABA-Deficiency Suppressor Locus HAS2 Encodes the PPR Protein LOI1/MEF11 Involved in Mitochondrial RNA Editing 被引量:1

The ABA-Deficiency Suppressor Locus HAS2 Encodes the PPR Protein LOI1/MEF11 Involved in Mitochondrial RNA Editing
原文传递
导出
摘要 The hotABA-deficiency suppressor2 (has2) mutation increases drought tolerance and the ABA sensitivity of stomata closure and seed germination. Here we report that the HAS2 locus encodes the MITOCHONDRIAL EDITING FACTOR11 (MEF11), also known as LOVASTATIN INSENSITIVE1. has21mef11 mutants exhibited phenotypes very similar to the ABA-hypersensitive mutant, hail-1 pp2ca-1 hab 1-1 abil-2, which is impaired in four genes encoding type 2C protein phosphatases (PP2C) that act as upstream negative regulators of the ABA signaling cascade. Like pp2c, mef11 plants were more resistant to progressive water stress and seed germination was more sensitive to paclobutrazol (a gibberellin biosynthesis inhibitor) as well as mannitol and NaCI, compared with the wild-type plants. Phenotypic alterations in mef11 were associated with the lack of editing of transcripts for the mitochondrial cytochrome c maturation FN2 (cCmFN2) gene, which encodes a cytochrome c-heme lyase subunit involved in cytochrome c biogenesis. Although the abundance of electron transfer chain complexes was not affected, their dysfunction could be deduced from increased respiration and altered production of hydrogen peroxide and nitric oxide in reef11 seeds. As minor defects in mitochondrial respiration affect ABA signaling, this suggests an essential role for ABA in mitochondrial retrograde regulation. The hotABA-deficiency suppressor2 (has2) mutation increases drought tolerance and the ABA sensitivity of stomata closure and seed germination. Here we report that the HAS2 locus encodes the MITOCHONDRIAL EDITING FACTOR11 (MEF11), also known as LOVASTATIN INSENSITIVE1. has21mef11 mutants exhibited phenotypes very similar to the ABA-hypersensitive mutant, hail-1 pp2ca-1 hab 1-1 abil-2, which is impaired in four genes encoding type 2C protein phosphatases (PP2C) that act as upstream negative regulators of the ABA signaling cascade. Like pp2c, mef11 plants were more resistant to progressive water stress and seed germination was more sensitive to paclobutrazol (a gibberellin biosynthesis inhibitor) as well as mannitol and NaCI, compared with the wild-type plants. Phenotypic alterations in mef11 were associated with the lack of editing of transcripts for the mitochondrial cytochrome c maturation FN2 (cCmFN2) gene, which encodes a cytochrome c-heme lyase subunit involved in cytochrome c biogenesis. Although the abundance of electron transfer chain complexes was not affected, their dysfunction could be deduced from increased respiration and altered production of hydrogen peroxide and nitric oxide in reef11 seeds. As minor defects in mitochondrial respiration affect ABA signaling, this suggests an essential role for ABA in mitochondrial retrograde regulation.
出处 《Molecular Plant》 SCIE CAS CSCD 2015年第4期644-656,共13页 分子植物(英文版)
关键词 abscisic acid mitochondria pentatricopeptide repeat protein RNA editing drought tolerance germination abscisic acid, mitochondria, pentatricopeptide repeat protein, RNA editing, drought tolerance germination
  • 相关文献

参考文献2

二级参考文献208

  • 1Sasaki, T., Mori, I.C., Furuichi, T., Munemasa, S., Toyooka, K., Matsuoka, K., Murata, Y., and Yamamoto, Y. (2010). Closing plant stomata requires a homolog of an aluminum-activated malate transporter. Plant Cell Physiol. 51, 354-365.
  • 2Sato, A., et al. (2009). Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OSTI/SnRK2.6 protein kinase. Biochem. J. 424, 438-448.
  • 3Schoonheim, P.J., Sinnige, M.R, Casaretto, J.A., Veiga, H., Bunney, T.D., Quatrano, R.S., and de Boer, A.H. (2007). 14-3-3 adaptor proteins are intermediates in ABA signal transduction during barley seed germination. Plant J. 49, 289-301.
  • 4Schroeder, J., and Hagiwara, S. (1989). Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. Nature. 338, 427-430.
  • 5Schwartz, A., Wu, W.-H., Tucker, E.B., and Assmann, S.M. (1994). Inhibition of inward K^+ channels and stomatal response by abscisic acid: an intracellular locus of phytohormone action. Proc. Natl Acad. Sci. U S A. 91, 4019-4023.
  • 6Schwarz, M., and Schroeder, J.I. (1988). Abscisic acid maintain S-type anion channel activity in ATP-depleted Vicia faba guard cells. FEBS Lett. 428, 177-182.
  • 7Scippa, G.S., DiMichele, M., Onelli, E., Patrignani, G., Chiatante, D., and Bray, E.A. (2004). The histone-like protein H1-S and the response of tomato leaves to water deficit. J. Exp. Bot. 55, 99-109.
  • 8Shang, Y., et al. (2010). The Mg-chelatase H subunit of Arabidopsis antagonizes a group of transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell. 22, 1909-1935.
  • 9Sharp, R.E., LeNoble, M.E., Else, M.A., Thorne, E.T., and Gherardi, F. (2000). Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance: evidence for an interaction with ethylene. J. Exp. Bot. 51, 1575-1584.
  • 10Sharp, R.E., Poroyko, V., Hejlek, L.G., Spollen, W.G., Springer, G.K., Bohnert, H.J., and Nguyen, H.T. (2004). Root growth maintenance during water deficits: physiology to functional genomics. J. Exp. Bot. 55, 2343-2351.

共引文献16

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部