期刊文献+

Synthesis of Long Chain Fatty Acids Acylated Coumarin Glycoside Esters with Lipase as Catalyst 被引量:1

Synthesis of Long Chain Fatty Acids Acylated Coumarin Glycoside Esters with Lipase as Catalyst
原文传递
导出
摘要 A series of novel coumarin glycoside esters(1-9) was synthesized through the acylation reaction of 4-methylcoumarin-7-O-β-D-glucoside(11) with different long chain fatty acids catalyzed by lipase in organic medium. The acylation occurred regioselectively at the 6'-OH of glycosyl moiety. The enzymatic synthesis was optimized to achieve 54%-70% yield using immobilized lipase(Novozym 435, 10 mg/mL) as catalyst and acetone and pyri- dine(9:1, volume ratio, water content〈1%) as solvent with an acyl donor/coumarin glycoside molar ratio of 10:1 at a temperature of 40--50 ℃ for 96 h. All the synthesized compounds were confirmed. A series of novel coumarin glycoside esters(1-9) was synthesized through the acylation reaction of 4-methylcoumarin-7-O-β-D-glucoside(11) with different long chain fatty acids catalyzed by lipase in organic medium. The acylation occurred regioselectively at the 6'-OH of glycosyl moiety. The enzymatic synthesis was optimized to achieve 54%-70% yield using immobilized lipase(Novozym 435, 10 mg/mL) as catalyst and acetone and pyri- dine(9:1, volume ratio, water content〈1%) as solvent with an acyl donor/coumarin glycoside molar ratio of 10:1 at a temperature of 40--50 ℃ for 96 h. All the synthesized compounds were confirmed.
出处 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2015年第4期534-538,共5页 高等学校化学研究(英文版)
基金 Supported by the National Natural Science Foundation of China(Nos.21342015, J1210040) and the Hunan Provincial Natu- ral Science Foundation, China(No. 14JJ2048).
关键词 Coumarin glycoside Lipase-catalyzed acylation Long chain fatty acid Regioselective acylation Coumarin glycoside Lipase-catalyzed acylation Long chain fatty acid Regioselective acylation
  • 相关文献

参考文献19

  • 1Patil P.O., Bari S. 8., Firke S. D., Deshmukh P. K., Donda S. T., Bioor.g.Aled Chent, 2013, 21, 2434.
  • 2Hu Y. F., Guo Z., Lue 8. M., Xu X. B., J. Agric. Food Chem., 2009, 57,3845.
  • 3Yang S. P., Han L. J., Pan Y., Wang D. Q., Wang N. N., Wang T., Chem. J. Chinese Universities. 2013, 34(2), 364.
  • 4Olomola T. 0., Klein R., Mautsa N., Sayed Y., Kaye P. T., Bioorg. Aled. Chem., 2013, 21,1964.
  • 5Touisni N., Maresca A., Mcdonald P. C., Lou Y. M., Scozzafava A., Dedhar S., Winum J. Y., Supuran C. T., J. Aled. Chem., 2011, 54, 8271.
  • 6Sandhu S., Bansal Y., Silakari 0., Bansal G., Bioorg. Aled. Chem., 2014,22,3806.
  • 7Maresca A., Supuran C. T., Bioorg. Aled Chem. Lett., 2010, 20, 4511.
  • 8Wu Z., Fu X. L., Yang N., Wang Q. A., Chem. Res. Chinese Universities, 2013, 29(3), 460.
  • 9Chebil L., Anthoni 1., Humeau C., Gerardin C., Engassser J. M., Ghoul M., J. Agric. Food. Chem., 2007, 55, 9496.
  • 10Salem J. H., Humeau C., Chevalot I., Harscoat-Schiavo C., Vanderesse R., Blanchard F., Fick M., Process Biochem., 2010, 45, 382.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部