摘要
To produce β-glucosidase by consecutive batch fermentation, a marine Aspergillus niger was immobilized on a natural carrier, towel gourd vegetable sponges. The immobilized mycelia were 0.15 g/g carrier with the immobilized biomass percentage of over 95%. The immobilized mycelia possessed the long durability(22.5 days). The maximum production occurred 1.5 day earlier by the immobilized mycelia than by the free mycelia. β-Glucosidase production of five consecutive batches was over 110 U/m L. At high salinity,the activity and stability of β-glucosidase from the marine A. niger increased remarkable. Immobilizing the marine A. niger on the novel natural carrier achieved the efficient production of β-glucosidase.
To produce β-glucosidase by consecutive batch fermentation, a marine Aspergillus niger was immobilized on a natural carrier, towel gourd vegetable sponges. The immobilized mycelia were 0.15 g/g carrier with the immobilized biomass percentage of over 95%. The immobilized mycelia possessed the long durability(22.5 days). The maximum production occurred 1.5 day earlier by the immobilized mycelia than by the free mycelia. β-Glucosidase production of five consecutive batches was over 110 U/m L. At high salinity,the activity and stability of β-glucosidase from the marine A. niger increased remarkable. Immobilizing the marine A. niger on the novel natural carrier achieved the efficient production of β-glucosidase.