期刊文献+

网络热点话题传播的脉冲时序行为动力模型 被引量:1

Pulse time series dynamic model for propagation of hot topics in network
下载PDF
导出
摘要 微博、论坛等交互式网站上的热点话题是网络舆情的源头与集散地,早期发现与预测网络热点话题是舆情控制的关键。针对交互式网络热点话题,Yasuko Matsubara等人对信息传播的模式进行了建模,提出了Spike M模型,该模型可以较好地反映信息传播的模式。但是针对热点话题呈现多峰的情况,该模型则无法拟合。且该模型假设针对某一事件,每个网络用户只能发布一次消息,这与实际情况不符。从实际情况出发(针对同一话题,网络用户可以多次发布消息),提出了脉冲时序行为动力模型(PTSDM)。假设多次发布消息的用户数服从幂律分布,从用户行为的角度分析话题的特征,在模型中引入脉冲干扰,使模型更具随机性,更符合客观实际,从而可以拟合不同类型的热点话题。采用两个数据集作为测试样本,进行了实验,实验表明了所构建模型的有效性。 The hot topics on the microblogs,forums and other interactive websites are the source and distribution center of the network public opinion.Therefore,early detection and prediction of network hot topics are key to the control of public opinion.Yasuko Matsubara and his colleagues proposed a model(Spike M model)for information diffusion,which can describe certain patterns of information diffusion well.However,the Spike M model does not work well the multimodal patterns,and its assumption that each blogger blogs at most once about an event is inconsistent with the actual situation.Since most web users post about the same topics repeatedly,the authors assume that the number of users following a power law distribution.Then they analyze the characteristics of the topics from the dimension of the user behavior.Finally,they propose a new model(PTSDM)for interactive network based the assumption just mentioned,which is cable of fitting different kinds of hot topics.Meanwhile,the introduction of the pulse noise makes the model more in line with the reality.Two datasets are selected and comprehensive experiments are conducted.Experimental results show the effectiveness of the model built in this paper.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第16期121-129,共9页 Computer Engineering and Applications
基金 国家自然科学基金(No.61170112) 河北省教育厅自然科学基金项目(No.2007470 No.QN20131141)
关键词 建模 时间序列 热点话题 脉冲噪声 modeling time series hot topics pulse noise
  • 相关文献

参考文献15

  • 1韩忠明,陈妮,乐嘉锦,段大高,孙践知.面向热点话题时间序列的有效聚类算法研究[J].计算机学报,2012,35(11):2337-2347. 被引量:31
  • 2Matsubara Y,Sakurai Y,Prakash B A,et al.Rise and fall patterns of information diffusion:model and implications[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,Beijing,China,2012:6-14.
  • 3Nekovee M,Moreno Y,Bianconi G,et al.Theory of rumour spreading in complex social networks[J].Physica A:Statistical Mechanics and its Applications,2007,374(1):457-470.
  • 4Centola D.The spread of behavior in an online social network experiment[J].Science,2010,329(5996):1194-1197.
  • 5Wu F,Huberman B A.Novelty and collective attention[J].Proceedings of the National Academy of Sciences,2007,104(45):17599-17601.
  • 6赵丽,袁睿翕,管晓宏,贾庆山.博客网络中具有突发性的话题传播模型[J].软件学报,2009,20(5):1384-1392. 被引量:35
  • 7Daley D J,Kendall D G.Epidemics and rumours[J].Nature Science,1964,204.
  • 8周苗苗,许成,刘晓波.社会网络上的谣言传播模型[J].青岛大学学报(自然科学版),2010,23(4):28-31. 被引量:2
  • 9Apolloni A,Channakeshava K,Durbeck L,et al.A study of information diffusion over a realistic social network model[C]//International Conference on Computational Science and Engineering.IEEE,2009,4:675-682.
  • 10Anderson R M,May R M,Anderson B.Infectious diseases of humans:dynamics and control[M].Oxford:Oxford University Press,1992.

二级参考文献34

  • 1李爱国,覃征.在线分割时间序列数据[J].软件学报,2004,15(11):1671-1679. 被引量:27
  • 2詹艳艳,徐荣聪,陈晓云.基于斜率提取边缘点的时间序列分段线性表示方法[J].计算机科学,2006,33(11):139-142. 被引量:46
  • 3Kumar R, Novak J, Raghavan P, Tomkins A. On the bursty evolution of blogspace. In: Proc. of the 12th Int'l Conf. on World Wide Web. New York: ACM Press, 2003. 159-178.
  • 4China Internet Network Information Center. Research report of 2007 China blog market. Statistical Report, 2007 (in Chinese). http://www.cnnic.net.cn/html/Dir/2007/12/26/4948.htm
  • 5China Internet Network Information Center. Research report of 2006 China blog. Statistical Report, 2006 (in Chinese). http://www.cnnic.net.cn/html/Dir/2006/09/25/4176.htm
  • 6Zhao ZL. A clear thinking toward the prosperity of blog: A disseminative understanding of news biog. Journal of Nanjing University of Posts and Telecommunications (Social Science), 2006,8(2):23-26
  • 7Qu H. "Alienation" of online community and media. Southeast Communication, 2006,(3):45-47
  • 8Kumar R, Novak J, Raghavan P, Tomkins A. Structure and evolution of blogspace. Communications of the ACM, 2004,47(12): 35-39.
  • 9Adar E, Zhang L, Adamic LA, Lukose RM. Implicit structure and the dynamics of blogspace. In: Proc. of the Workshop on the Weblogging Ecosystem, the 13th Int'l World Wide Web Conf. New York: ACM Press, 2004.
  • 10Adar E, Adamic LA. Tracking information epidemics in blogspace. In: Proc. of the 2005 IEEE/WIC/ACM Int'l Conf. on Web Intelligence. Compiegne: IEEE Computer Society Press, 2005. 207-214.

共引文献63

同被引文献18

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部