期刊文献+

应用于铣削参数优化的粒子群和遗传交互算法 被引量:1

Mutual studying algorithm integrated PSO and GA and its application to optimal parameters for milling computer engineering and applications
下载PDF
导出
摘要 针对工程领域中的非线性、多极值和多维度等复杂优化问题,提出把遗传算子引入粒子群算法中,采用粒子搜索变异,交互学习的方法。方法综合了粒子群算法原理简单、搜索速度快,遗传算法全局搜索能力强的特点,实现了算法避免陷入局部最优解,以获得较高的精度和执行力。通过对比分析,此交互学习策略在求解精度、效率和处理多种复杂度问题等方面都有优越性,特别适用于精确求解和解决复杂优化问题。实例证明,算法可以解决基于机械动力学理论的铣削参数优化中非线性、多极值、多维度的工程问题。 There are many non-linear,multi-extremum and multidimensional complicated problems in the applications of the engineering field.This paper puts forward the Genetic Algorithm(GA)into the Particle Swarm Algorithm(PSO),and uses the method of mutual learning to solve those problems.This method integrates the particle swarm algorithm's simple theory and quick convergence with the genetic algorithm's global search ability to get higher convergence precision,stronger execution and avoid falling into local optimal solution.The comparative analysis results show the parallel learning strategy has great advantages in terms of accuracy,efficiency and processing ability of different complexity problems.This algorithm is especially applicable to solve accurately and complex problems.Example shows that this algorithm can solve the nonlinear,multiple maximum and multi-dimension engineering problem existed in the milling parameters optimization solved by the machine dynamics theory.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第16期252-258,共7页 Computer Engineering and Applications
关键词 粒子群算法 遗传算法 交互学习 机械动力学 铣削参数优化 Particle Swarm Optimization Genetic Algorithm mutual learning machine dynamics milling parameters optimization
  • 相关文献

参考文献22

  • 1梁新刚,岳宝.微尺度下壁面粗糙度对面向导热影响研究[J].工程热物理学报,2006,27(3):475-477. 被引量:5
  • 2陈德欣,王志法,姜国圣,张瑾瑾,唐仁正.残余应力对W-Cu复合材料导热性能的影响[J].稀有金属材料与工程,2005,34(12):1982-1984. 被引量:7
  • 3Clerc M,Kennedy J.The particle swarm:explosion,stability,and convergence in multidimensional complex space[J].IEEE Trans on Evolut Comput,2002,6:58-73.
  • 4Ratnaweera A,Halgamuge S K,Watson H C.Self-organizing hierarchical particle swarm optimizer.with time-varying acceleration coefficients[J].IEEE Trans on Evolut Comput,2004,8:240-255.
  • 5Monson C K,Seppi K D.The Salman swarm-A new approach to particle motion in swarm optimization[J].Lecture Notes in Computer Science,2004,3102:140-150.
  • 6Pulido G T,Coello C A C.Using clustering techniques to improve the performance of a multi-objective particle swarm optimizer[C]//Proc of the GECCO,2004:225-237.
  • 7Van den Bergh F,Engelbrecht A P.A cooperative approach to particle swarm optimization[J].IEEE Trans on Evolut Comput,2004,8:225-239.
  • 8Kennedy J,Mendes R.Population structure and particle swarm performance[C]//Proc of the IEEE CEC,2002:1671-1676.
  • 9王雪飞,王芳,邱玉辉.一种具有动态拓扑结构的粒子群算法研究[J].计算机科学,2007,34(3):205-207. 被引量:16
  • 10Li L L,Liu Wang L.An effective hybrid PSOSA strategy for optimization its application to parameter estimation[J].Applied Mathematics and Computation,2006,179(1):135-146.

二级参考文献45

共引文献196

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部