期刊文献+

基于主题迁移的跨视角动作识别 被引量:1

Cross-view Action Recognition by Topic Transfer
下载PDF
导出
摘要 利用迁移学习的思想,提出了一个主题迁移模型(topic transfer model)用于跨视角的动作识别。借助源视角视频和目标视角视频,学习一个迁移模型,利用这个模型来实现对目标视角下视频的分类。具体方法是在源视角下训练一个主题模型,将反应源视角的语义信息传递到目标视角中,然后在目标视角中训练一个主题模型,实现跨视角的动作表示,利用支持向量机进行动作的训练和分类。实验结果验证了该方法的有效性。 A novel approach is proposed to recognizing human actions from different views by view knowledge transfer. A topic model was trained in the source view, the semantic topics were transferred to the target view for learning a new topic model via a semi-latent manner. For a new video in target view, the topics inferenced by the target topic model can be transferred to the source view for action recognition.
出处 《科学技术与工程》 北大核心 2015年第23期164-169,共6页 Science Technology and Engineering
基金 国家自然科学基金(61403417)资助
关键词 跨视角 动作识别 主题模型 迁移学习 cross-view action recognition topic model transfer learning
  • 相关文献

参考文献8

  • 1Farhadi A T M K. Learning to recognize activities from the wrong view point. Europe Conference on Computer Vision, Berlin : Springer-Ver- lag Berlin ,2008.
  • 2Liu J G S, Kuipers M, Savarese B, Cross-view action recognition v/a view knowledge transfer. IEEE Conference on Computer Vision and Pattern Recognition 2011 , IEEE: New York, 2011 : 1-8.
  • 3Bian W T, Rui D C, Cross-domain human action recognition. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 2012, 42(2) : 298-307.
  • 4Jialin S, Yang P Q. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2010, 22 (10) : 1345-1359.
  • 5Du T S. Human activity recognition with metric learning. European Conference on Computer Vision, 2008 : 548-561.
  • 6Niebles J C, Hongcheng W, Li Feifei. Unsupervised learning of hu- man action categories using spatial-temporal words. International Jour- nal of Computer Vision, 2008 , 79 ( 3 ) : 299-318.
  • 7Wang Y, Greg M, Human action recognition by semilatent topic mod- els. IEEE Trans Pattern Anal Mach Intell, 2009, 31 (10): 1762-1774.
  • 8Maji S B, Malik A C. Chssifieation using intemection kernel support vector machines is efficient. IEEE Conference on Computer Vision and Pattern Recognition,2008 : 1-8.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部