期刊文献+

非交换子群的交较大的有限p群

The Intersection of Non-abelian Subgroups of Finite p-groups
下载PDF
导出
摘要 在有限p群中引进另一个新的子群概念-IAk(G),即G的所有Ak子群的交.IAk(G)是G的特征子群,并且IA1(G)就是群G的所有非交换子群的交.对于pn阶群G而言,本文完全分类了|IA1(G)|分别为pn-2和pn-3的pn阶群G. In this paper,we introduce a new concept-IAk(G),the intersection of all Aksubgroups of G.IAk(G)is a characteristic subgroup of G and IA1(G)is the intersection of all non-abelian subgroups of G.Let the order of Gbe pn.We give complete classifications of G with|IA1(G)|=pn-2and|IA1(G)|=pn-3,respectively.
出处 《河南师范大学学报(自然科学版)》 CAS 北大核心 2015年第4期21-25,共5页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(11101252)
关键词 Ak群 有限P群 子群的交 Ak group finite p-groups intersection of subgroups
  • 相关文献

参考文献10

  • 1Golovanov M I. Finite p-groups with the condition |Im (P)| = pm-1 (C)[M]. Krasnoyarsk: Otdel Akad Nauk SSR, 1973.
  • 2安立坚,魏军军.满足|I_3(G)|=4的有限2群的完全分类[J].数学的实践与认识,2010,40(22):237-242. 被引量:1
  • 3Zhang Qinhai, Wei Junjun. The intersection of subgroups of finite p-groups[J].Arch der Math,2011,96(1) :9-17.
  • 4Redei L. Das "schiefe Produkt" in der Gruppentheorie mit Anwendung auf die endlichen nichtkommutativen Gruppen mit lauter kommu- tativen echten Untergruppen und die Ordnungszahlen,zu denen nut kommutative Gruppen gehoren[J]. Comment Math Helvet, 1947,20: 225-264.
  • 5Zhang Qinhai, Sun Xiujuan, An Lijian, et al. Finite p-groups all of whose subgroups of index p2 are abelian[J]. Algebra Colloquium, 2008,15(1) : 167-180.
  • 6徐明曜,曲海鹏.有限P群[M].北京:北京大学出版社,2010.
  • 7Xu Mingyao, An Lijian, Zhang Qinhai. Finite p-groups all of whose non-abelian proper subgroups are generated by two elements[J]. J Algebra, 2008,319 : 3603-3620.
  • 8Blackburn N. Generalizations of certain elementary theorems on p-groups[J]. Proc Lon-don Math Soc, 1961,11 (3) : 1-22.
  • 9Berkovieh Y, Janko Z. Groups of Prime Power Order II[M]. New York:Walter de Gruyter,2008.
  • 10曲海鹏,胡瑞芳.内交换p群的中心扩张(Ⅲ)[J].数学学报(中文版),2010,53(6):1051-1064. 被引量:4

二级参考文献20

  • 1Berkovich Y., Janko Z., Structure of finite p-groups with given subgroups, Contemp. Math., 2006, 402:13-93.
  • 2Glauberman G., Large subgroups of small class in finite p-groups, J. Algebra, 2004, 272(1): 128-153.
  • 3Glauberman C., Abelian subgroups of small index in finite p-groups, J. Group Theory, 2005, 8(5): 539-560.
  • 4Glauberman C., Centrally large subgroups of finite p-groups, J. Algebra, 2006, 300(2): 480-508.
  • 5Janko Z., Finite 2-groups with exactly four cyclic subgroups of order 2n, J. Reine Angew. Math., 2004, 566:135-181.
  • 6Robinson D. J. S., A Course in the Theory of Groups, New York: Springer-Verlag, 1980.
  • 7Suzuki M., Group Theory I, New York: Springer-Verlag, 1982.
  • 8Xu M. Y., Qu H. P., Zhang Q. H., Finite p-groups all of whose subgroups of index p2 are metacyclic, to appper in Acta Math. Sci.
  • 9Zhang Q. H., Li L. L., Xu M. Y., Finite p-groups all of whose quotient groups are abelian or inner-abelian, to appear in Comm. Alg.
  • 10Zhang Q. H., Guo X. Q., Qu H. P., Xu M. Y., Finite groups which have many normal subgroups, J. Korean Math. Soc., 2009, 46(6): 1165-1178.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部