期刊文献+

基于图像欧氏距离流形降维的端元提取算法

Image Euclidean Distance-based Manifold Dimensionality Reduction for Endmember Extraction
下载PDF
导出
摘要 由于多重反射和散射,高光谱图像中的混合像元实际上是非线性光谱混合传统的端元提取算法是以线性光谱混合模型为基础,因此提取精度不高针对高光谱图像的非线性结构.本文提出了基于图像欧氏距离非线性降维的高光谱遥感图像端元提取方法该方法结合高光谱数据的物理特性,将图像欧氏距离引入局部切空间排列进行非线性降维以更好的去除高光谱数据集中冗余的空间信息和光谱维度信息,然后对降维后的数据利用寻找最大单形体体积的方法提取端元.真实高光谱数据实验表明,提出方法对高光谱图像端元提取具有良好的效果,性能优于线性降维的主成分分析算法和原始的局部切空间排列算法. Mixed pixel in hyperspectral image is actually nonlinear mixing of endmembers,which is caused by multiple reflectance and scattering.Since traditional endmember extraction algorithms are based on linear spectral mixture model,they perform poorly in finding the correct endmembers.Considering the physical characters of hyperspectral imagery,a new method is proposed to introduce image Euclidean distance into local tangent space alignment for nonlinear dimension reduction.The proposed methods can discard efficiently the redundant information from both the spectral and spatial dimensions.Endmembers are extracted by looking for the largest simplex volume from low-dimensional space.The experimental results of real image scenes demonstrated that the method outperformed the PCA and LTSA algorithm.
出处 《河南师范大学学报(自然科学版)》 CAS 北大核心 2015年第4期50-54,共5页 Journal of Henan Normal University(Natural Science Edition)
基金 河南省重点科技攻关计划项目(122102210243) 光电成像技术与系统教育部重点实验室开放基金(2014IOFOE01)
关键词 高光谱图像 非线性降维 图像欧氏距离 局部切空间排列 端元提取 hyperspectral imagery nonlinear dimensional reduction image Euclidean distance local tangent space alignment endmember extraction
  • 相关文献

参考文献19

  • 1Keshawl N. Mustard J F. Spectral unmixing[J]. IEEE Signal Processing Magazine, 2002 ; 19 ( 1 ) : 44-57.
  • 2Plaza A, Martinez R, Perez R, et al. A quantitative and comparative analysis of endmember extraction algorithms from hyperspeetral da- ta[J]. IEEE Transactions on Geoscience and Remote Sensing,2004,42(3):650-663.
  • 3Neville R A, Staenz K, Szeredi T, et al. Automatic endmember extraction from hyperspectral data for mineral exploration[C]. Proc 21st Canadian Symposium Remote Sensing,Ottawa, 1999.
  • 4Jia S, Qian Y. Constrained nonnegalive matrix factorization for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Re- mote Sensing,2009,47(1) : 161-173.
  • 5孙旭光,蔡敬菊,徐智勇,张建林.基于非负矩阵分解的高光谱图像混合像元分解[J].光电工程,2012,39(12):97-102. 被引量:3
  • 6Bioucas-Dias J M, Plaza A, Dobigeon N, et al. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012,5 (2) :354-379.
  • 7Bachmann C M, Ainsworth T L, Fusina R A. Exploiting manifold geometry in hyperspectral imagery[J]. IEEE Transactions on Geosci- ence and Remote Sensing,2005,43(3) :441-454.
  • 8杜培军,王小美,谭琨,夏俊士.利用流形学习进行高光谱遥感影像的降维与特征提取[J].武汉大学学报(信息科学版),2011,36(2):148-152. 被引量:40
  • 9Chen Y, Crawford M M, Ghosh J. Improved nonlinear manifold learning for land cover classification via intelligent landmark selection[C].IEEE Geoscience and Remote Sensing Symposium,Denver,2006.
  • 10Ma L, Crawford M M, Tian J. Anomaly detection for hyperspectral images based on robust locally linear embedding[J]. Journal of In frared, Millimeter, and Terahertz Waves, 2010,31(6) : 753-762.

二级参考文献36

  • 1Hughes G F. On the Mean Accuracy of Statistical Pattern Recognition[J]. IEEE Trans Inf Theory, 1968, IT-14(1):55-63.
  • 2Kumar S, Ghosh J, Crawford M M. Best-Bases Feature Extraction Algorithms for Classification of Hyperspeetral Data [J]. IEEE Trans Geosci and Rem Sens, 2001, 39(7): 1 368-1 379.
  • 3Hsu P H. Feature Extraction of Hyperspectral Ima- ges Using Wavelet and Matching Pursuit [J]. IS- PRS Journal of Photogrammetry & Remote Sens- ing, 2007,62:78-92.
  • 4Du Qian, He Yang. Similarity-based Unsupervised Band Selection for Hyperspectral Image Analysis [J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 564-568.
  • 5Tenenbaum J, Silva D D , Langford J . A Global Geometric Framework for Nonlinear Dimensionality Reduction[J] . Science, 2000, 290 (5 500) : 2 319 -2 323.
  • 6Roweis S, Saul L. Nonlinear Dimensionality Reduc- tion by Locally Linear Embedding [J]. Science, 2000, 290(5 500) : 2 323 - 2 326.
  • 7Junping Z, Li S Z, Jue W. Manifold Learning and Applications in Recognition in Intelligent Multime- dia Processing with Soft Computing [M]. Heidel- berg: Springer-Verlag, 2004.
  • 8Mikhail B, Parth N. Laplacian Eigenmaps for Di- mensionality Reduction and Data Representation [J]. Neural Computation, 2003, 15(6): 1 373- 1 396.
  • 9Zhang Zhenyue, Zha Hongyuan. Principal Mani- folds and Nonlinear Dimensionality Reduction Via Tangent Space Alignment [ J]. SIAM Journal of Scientific Computing, 2004, 26(1): 313-338.
  • 10Trevor C, Michael C. Multidimensional Scaling [M]. London: Chapman & Hail, 1994.

共引文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部