摘要
通过数学模型研究了抗生素耐药性的传播.计算了基本再生数,得到了无菌平衡点,两个边界平衡点(表示抗生素的突变体消失)和正平衡点(表示野生菌株和抗生素的突变体)持久存在的条件.建立了判定无菌平衡点、边界平衡点及正平衡点稳定的准则.通过数值模拟进一步观察了模型的动力学行为并验证了理论分析结果的正确性.
The spread of antibiotic resistance is studied through a mathematical model. We compute the basic repro-duction number Ri, the bacteria-free stead state, two boundaries stead state which we define as existence of wild strain of bacteria while the antibiotic resistant mutants dies out, and the positive stead state when the wild strain of bacteria and the antibiotic resistant mutants persists in the two population for specific conditions. We also determine stability criteria for the bacteria-free stead state, boundaries stead state and the positive stead state. Numerical results are provided to illustrate theoretical results and the further insight of the dynamics of the models.
出处
《新疆大学学报(自然科学版)》
CAS
北大核心
2015年第2期170-176,共7页
Journal of Xinjiang University(Natural Science Edition)
基金
supported by the National Nature science Foundation of China(11261058)