期刊文献+

页岩气渗流过程中的多场耦合机理 被引量:14

The coupling of multi-physics for gas flow in shale reservoirs
原文传递
导出
摘要 本文简要概述了目前模拟页岩气渗流机理数学模型的不足之处,基于线弹性多孔介质力学,建立了自由气渗流、吸附气表面扩散、吸附气非平衡解吸附、岩石变形的全耦合页岩气微观渗流数学模型,推导了纯孔隙介质与包含裂隙介质的主要物性参数的应力敏感模型,并推导了解吸附过程非平衡效应的理论模型,形成了一套较全面的描述页岩气在线弹性微纳多孔介质中的微观流动数学模型.通过数值模拟分析了应力敏感、表面扩散、非平衡效应对页岩气传输的影响,结果表明:页岩的应力敏感效应由基质中的天然裂缝决定,页岩孔隙本身的应力敏感性可以忽略;吸附气的表面扩散十分缓慢,可以忽略;平衡常数与孔隙度对非平衡效应影响显著,吸附速率对页岩气流动的影响十分明显,吸附速率越大,页岩气流速越大.本文建立的数学模型为深入理解页岩气渗流微观机理,科学开发页岩气藏提供了一定的理论基础. The deficiencies in present mathematic models of shale gas flow are outlined briefly. Based on the linear poroelasticity, the transfer of free gas in nanopores, surface diffusion of adsorbed gas, nonlinear and non-equilibrium gas adsorption-desorption kinetics as well as the rock deformation are all coupled to formulate a new mathematic model to unlock the true potential of shale-gas development. The stress-and-pressure dependent permeability and porosity models of matrix containing random fractures, together with the non-equilibrium adsorption-desorption kinetics, are also deduced in this paper. Numerical method is applied to solve the model and analyze the impacts of stress-and-pressure sensitivity, surface diffusion and non-equilibrium adsorption on shale gas flow. The results suggest: (1) The fracture density in the shale matrix plays an important role in the permeability and porosity, the stress-and-pressure sensitivity of shale rock itself can be ignored; (2) compared with the free gas flow in pores, the surface diffusion of adsorbed gas can be ignored; (3) the recovery time during non-equilibrium sorption process relies heavily on equilibrium coefficient and rock porosity, and the desorption rate significantly impacts the gas flow rate.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2015年第9期25-38,共14页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家自然科学基金资助项目(批准号:51490650 51234006)
关键词 页岩气 多物理场耦合 非平衡效应 应力敏感 渗流机理 shale gas, multi-physics coupling, non-equilibrium effect, poroelasticity, flow mechanisms
  • 相关文献

参考文献32

  • 1Birol F. Golden rules for a golden age of gas-World energy outlook special report on unconventional gas. Paris: International Energy Agency (IEA), 2012.
  • 2EIA. World shale gas resources: An initial assessment of 14 regions outside the United States. Washington D C: U.S. Energy Information Administration, 2011.
  • 3Curtis J B. Fractured shale gas systems. AAPG Bull, 2002, 86:1921-1938.
  • 4Yuan J H, Luo D K, Feng L Y. 2015. A review of the technical and economic evaluation techniques for shale gas development. Appl Energy, 2015, 148:49-65.
  • 5Ren J J, Guo P. A novel semi-analytical model for finite-conductivity multiple fractured horizontal wells in shale gas reservoirs. J Nat Gas Sci Eng, 2015, 24:35-51.
  • 6Yang T Y, Li X, Zhang D X. Quantitative dynamic analysis of gas desorption contribution to production in shale gas reservoirs. J Unconven Oil Gas Resour, 2015, 9:18-30.
  • 7Qanbari F, Clarkson C R. A new method for production data analysis of tight and shale gas reservoirs during transient linear flow period. J Nat Gas Sci Eng, 2013, 14:55-65.
  • 8Zhang H, Liu J, Elsworth D. How sorption-induced matrix deformation affects gas flow in coal seams: A new FE model. Int J Rock Mech Min Sci, 2008, 45:1226-1236.
  • 9Huang J, Ghassemi A. Poroelastic analysis of gas production from shale. In: Proceedings of 47th US Rock Mechanics/Genomechanics Symposium. San Francisco, 2011.
  • 10Dong J J, Hsu J Y, Wu W J, et al. Stress-dependence of the permeability and porosity of sandstone and shale from TCDP hole-A. Int J Rock Mech Min Sci, 2010, 39:429-442.

二级参考文献32

  • 1陈勉,金衍,张广清.石油工程岩石力学.北京:科学出版社,2008.
  • 2金衍,陈勉.井壁稳定力学.北京:科学出版社,2012.
  • 3Guo C, Wei M, Chen H, et al. Improved numerical simulation for shale gas reservoirs. In: Offshore Technology Conference Asia, Kuala Lumpur, 2014.
  • 4Javadpour F, Fisher D, Unsworth M. Nanoscale gas flow in shale gas sediments. J Can Petrol Technol, 2007, 46:55-61.
  • 5Freeman C M, Moridis G, Llk D, et al. A numerical study of performance for tight gas and shale gas reservoir systems. J Petrol Sci Eng, 2013, 108:22-39.
  • 6Kast W, Hohenthanner C R. Mass transfer within the gas-phase of porous media. Int J Heat Mass Tran, 2000, 43:807-823.
  • 7Guo J J, Zhang L H, Wang H T, et al. Pressure transient analysis for multi-stage fractured horizontal wells in shale gas reservoirs. Transp Porous Med, 2012, 93:635-653.
  • 8Nobakht M, Clarkson C R, Kaviani D. New type curves for analyzing horizontal well with multiple fractures in shale gas reservoirs. J Nat Gas Sci Eng, 2013, 10:99-112.
  • 9Zhao Y L, Zhang L H, Zhao J Z, et al. "Triple porosity" modeling of transient well test and rate decline analysis for multi-fractured hori- zontal well in shale gas reservoirs. J Petrol Sci Eng, 2013, 110:253-262.
  • 10Yu W, Sepehrnoori K. Numerical evaluation of the impact of geomechanics on well performance in shale gas reservoirs. In: 47th US Rock Mechanics/Genomechanics Symposium, San Francisco, 2013.

共引文献32

同被引文献256

引证文献14

二级引证文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部