期刊文献+

基于微正则退火算法对K-means聚类算法的优化 被引量:2

Optimization for K-means Clustering Algorithm Based on Microcanonical Annealing Algorithm
下载PDF
导出
摘要 K-means算法是经典的基于划分的聚类算法,但该算法存在依赖于初始聚类中心、容易陷入局部最优解等缺点。针对这些缺点,提出了基于微正则退火K-means聚类算法,通过继承微正则退火算法的高效全局寻优特性,可以避免陷入局部最优解。实验结果表明,改进的算法能够有效地减少原算法对初始聚类中心点的依赖,提高算法的稳定性,摆脱原算法容易陷入局部最优解的缺点。 K-means algorithm is one of the clustering algorithms based on partition. But the K-means clustering algorithm is de- pendent on the initial clustering center and easy to fall into local optimal solutions. Therefore, an improved K-means chustering al- gorithm based on the Microcanonical annealing algorithm is put forward, which has efficient global optimization characteristics, and can avoid falling into local optimal solutions. The experimental resuhs show that the improved algorithm can effectively reduce the dependence of the original algorithm on the initial clustering center, and improve the stability of the algorithm, getting rid of the defect that the original algorithm is easy to fall into local optimal solutions.
出处 《电视技术》 北大核心 2015年第17期139-142,共4页 Video Engineering
基金 海南省社会发展科技专项项目(SF201455)
关键词 K—means算法 微正则退火 聚类 K-means algorithm microcanonical annealing clustering
  • 相关文献

参考文献8

二级参考文献24

共引文献120

同被引文献11

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部