期刊文献+

Mn_3O_4/石墨烯复合材料的制备与电化学性能研究 被引量:2

Synthesis and Electrochemical Performance of Mn_3O_4/Graphene Composites
下载PDF
导出
摘要 本文以氧化石墨烯(GO)溶液为氧化剂,采用水热法使GO直接氧化Mn(Ac)2制备Mn3O4/石墨烯复合材料,并通过在制备过程中加入氨水提高了复合材料中GO的还原程度与Mn3O4颗粒的分散性.制得的Mn3O4/石墨烯复合材料表现出优异的电化学性能.在0.5 A·g-1的电流密度下复合材料质量比容量可达到850 m Ah·g-1,0.5 A·g-1时充放电循环测试200周容量保持率为99%. The Mn3O4/Graphene composites were synthesized by hydrothermal method with the in-situ redox reaction of graphene oxide (GO) and manganese acetate (Mn(Ac)2). The phase structures and morphologies of the materials were character- ized by XRD, SEM and TEM. The XPS and IR techniques were used for studying the residual function groups of reduced graphene oxide (RGO). The electrochemical performances of the hybrids were tested in a coin cell. Results showed that the com- posites prepared with the addition of ammonia water (RM-A) have better performance. The graphenes in RM-A were better-re- duced and the Mn3O4 particles were much smaller. The Mn3O4/Graphene composites exhibited a high specific capacity with good rate capability and cycle stability. At the test current density of 0.5 A·g-l, the composites demonstrated a capacity of 850 mAh· g-l, and no capacity decays were observed up to 200 cycles.
出处 《电化学》 CAS CSCD 北大核心 2015年第4期326-331,共6页 Journal of Electrochemistry
基金 国家自然科学基金项目(No.20720150042 No.21321062) 973项目(No.2015CB251102)资助
关键词 锂离子电池 负极材料 MN3O4 石墨烯 lithium-ion battery anode materials Mn3O4 graphene
  • 相关文献

参考文献23

  • 1Wu H B, Chen J S, Hng H H, et al. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries[J]. Nanoscale, 2012, 4(8): 2526-2542.
  • 2Ji L W, Lin Z, Alcoutlabi M, et al. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries[J]. Energy & Environmental Science, 2011, 4(8): 2682-2699.
  • 3Wu C, Yin P, Zhu X, et al. Synthesis of hematite (c:-Fe203) nanorods: Diameter-size and shape effects on their appli- cations in magnetism, lithium ion battery, and gas sensors [J]. The Journal of Physical Chemistry B, 2006, 110(36): 17806-17812.
  • 4Wang Z Y, Luan D Y, Madhavi S, et al. ot-Fe203 nanotubes with superior lithium storage capability[J]. Chemical Com- munications, 2011, 47(28): 8061-8063.
  • 5Wang B, Zhu T, Wu H B, et al. Porous Co304 nanowires derived from long Co(CO3)0.5(OH).0.11H20 nanowires with improved supercapacitive properties[J]. Nanoscale, 2012, 4(6): 2145-2149.
  • 6Chen J S, Cheah Y L, Madhavi S, et al. Fast synthesis of o-MoO, nanorods with controlled asnect ratios and theirenhanced lithium storage capabilities[J]. The Journal of Physical Chemistry C, 2010, 114(18): 8675-8678.
  • 7Wang H Y, Cui L F, Yang Y, et al. Mn304-graphene hybrid as a high-capacity anode material for lithium ion batteries [J]. Journal of the American Chemical Society, 2010, 132 (40): 13978-13980.
  • 8Gao J, Lowe M A, Abrufia H D. Spongelike nanosized Mn304 as a high-capacity anode material for rechargeable lithium batteries [J]. Chemistry of Materials, 2011, 23 (13): 3223-3227.
  • 9Cheekati S, Xing Y, Zhuang Y, et al. Graphene platelets and their manganese composites for lithium-ion batteries [J]. ECS Transactions, 2011, 33(39): 23-32.
  • 10Dubal D P, Holze R. High capacity rechargeable battery electrode based on mesoporous stacked Mn304 nanosheets [J]. RSC Advances, 2012, 2(32): 12096-12100.

同被引文献11

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部