期刊文献+

乙炔电催化氧化制备草酸的机理研究 被引量:1

Mechanism Study on the Electrocatalytic Oxidation of Acetylene to Oxalic Acid
下载PDF
导出
摘要 选择铂为电极电催化氧化乙炔合成草酸,通过紫外-可见分光光度法和红外光谱法对产品进行表征,利用第一性原理计算方法探讨乙炔在催化剂Pt(111)表面的吸附情况,采用循环伏安法(CV)研究铂电极在硫酸钠溶液中电催化氧化乙炔的电极过程,重点测定电极的稳态极化曲线并根据极化曲线推算塔菲尔斜率,结合表观传递系数及反应级数对拟定的乙炔电催化氧化制备草酸的反应机理进行验证.实验结果表明,乙炔分子在Pt(111)面上呈平行桥键构型时吸附最稳定;铂电极在含体积分数为2%丙酮的0.4 mol·L-1硫酸钠溶液中可将乙炔电催化氧化为草酸;反应的速率控制步骤为CH≡CH+2(OH·)ads→HOCH=CHOH. A new method of electrocatalytic oxidation synthesis oxalic acid from acetylene was explored and the synthesized oxalic acid was characterized by Ultraviolet-visible spectrophotometry (UV-vis) and Infrared spectroscopy OR). First-principles cal- culations were carried out to examine the adsorption of acetylene over the Pt (111) surface. The electrocatalytic oxidation behavior of acetylene has been investigated on a Pt electrode by cyclic voltammetry (CV) and steady-state polarization in Na2SO4 solution. The formation mechanism of oxalic acid in the Na2SO4 solution was proposed and the transfer coefficients of the reaction were calculat- ed. The results show that acetylene molecule tends to adsorb through the threefold parallel-bridge configuration that is computed to be the most stable because of its lowest adsorption energy, is the rate-determining step in the electrolysis process. The rate of this step obtained from the assumed process agrees well with experiment.
出处 《电化学》 CAS CSCD 北大核心 2015年第4期353-361,共9页 Journal of Electrochemistry
基金 国家自然科学基金委员会和神华集团有限公司联合资助项目(No.U1261103) 中国科学院山西煤炭化学研究所煤转化国家重点实验室开放基金项目(No.J12-13-913)资助
关键词 乙炔 草酸 循环伏安法 电催化氧化机理 第一性原理 速控步骤 acetylene oxalic acid cyclic voltammetry electrocatalytic oxidation mechanism first-principles rate-determining step
  • 相关文献

参考文献2

二级参考文献23

  • 1Ristic N. M. , Kotorcevic M. , Lacnjevac C. M. , et al. , Electrochim. Acta, 2000, 45, 2973
  • 2Ysuzawa M. , Kan K. , Kunugi A. , et al. , Electrochim. Acta,1995, 40, 1785
  • 3Kurashima F. , Kashiwagi Y. , Kikuchi C. , et al. , Heteroeycles,1999, 50, 79
  • 4Chen L. M., Chen Y. L., Wang S. H., et al., Journal of Chinese Institute of Chemical Engineers, 2003, 34,399
  • 5Zhang X. , Chan K. Y. , Tseung A. C. C. , J. Electroanal.Chem. , 1995, 386,241
  • 6Zhang X. , Chan K. Y. , You J. K. , et al. , J. Electroanal.Chem. , 1997, 430, 147
  • 7Li W. , Nonaka T. , Chou T. C. , Electrochemistry, 1999, 67, 4
  • 8Wei X. L. , Shen P. K. , Chinese Journal of Chemical Physics,2003, 16,395
  • 9Monahov B. , Pavlov D. , Kirchev A. , et al. , J. Power Sources,2003, 113,281
  • 10Neumann K. H. , Joentgen W. , Heitkamp D. , et al. , US Patent 5801276, 1998

共引文献8

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部