期刊文献+

基于改进PCA的人脸识别算法 被引量:2

Face recognition algorithm based on improved PCA
下载PDF
导出
摘要 针对传统主成分分析法在特征提取中出现的耗时过长、平均对待所有像素点等问题,提出一种双中心羽化加权双向PCA(Bidirectional WPCA,BD-WPCA)的算法。算法首先将训练人脸样本和测试人脸样本图片进行双中心羽化加权处理,以增加人脸主要器官在识别中所占的比重;再用双向PCA算法分别在行和列方向上降维并提取特征;最后用K近邻法匹配分类。实验结果表明,该算法在降低运算耗费时间的同时能获得较高的识别率,具有可行性。 Aiming at the problems of original PCA like long calculating time and average treats all pixels, a recognition algorithm based on Bidirectional-WPCA was proposed. Firstly, the training and testing sample was weighted by double-center eclosion function to increase proportion of major organs. Then, the dimension of samples was reduced on the row and column by using the Bidirectional PCA algorithm. Last, the eigen was matched by K-NN algorithm. The experiment indicates that the algorithm not only speeded up the rate of calculation, but also got a better accuracy, which confirms the feasibility of the algorithm.
出处 《微型机与应用》 2015年第17期43-45,共3页 Microcomputer & Its Applications
关键词 人脸识别 双向PCA 双中心羽化加权 face recognition BD-PCA double-center eclosion function
  • 相关文献

参考文献8

  • 1BRUNELL R, POGGIO T. Face recognition:features versus templates[J]. IEEE Transactions Pattern analysis and Ma- chine Intelligence, 1993,15(10) : 1042-1052.
  • 2ROUDEY H A, BALUJA S, based face detection[J]. IEEE sis and Machine Intelligence, KANADE T. Neural network- Transaction on Pattern Analy- 1998,20( 1 ) :23-40.
  • 3余龙华,王宏,钟洪声.基于隐马尔科夫模型的人脸识别[J].计算机技术与发展,2012,22(2):25-28. 被引量:15
  • 4JAIN A K, DUIN R P W, MAO J. Statistical pattern recognition: a review[J].IEEE Transactions on Pattern Anal- ysis and Machine Intelligence, 2000,22(1 ) :4-37.
  • 5TURK M, PENTLAND A. Eigenfaces for recognition [J]. Journal of Cognitive Neuroscience, 1991,3( 1) :71-86.
  • 6Yang Jian, Zhang David, Yang Jingyu. Two-dimensional PCA: a new approach to appearance-based face represen- tation and recognition [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2004,26(1 )131-137.
  • 7Zuo Wangmeng, ZHANG David. Bidirectional PCA with assembled matrix distance metric for image recognition[J]. IEEE Transaction on Machine Intelligence, 2006,36(4): 863-872.
  • 8边肇棋 张学工.模式识别(第2版)[M].北京:清华大学出版社,2000..

二级参考文献11

  • 1徐毅琼,李弼程,王波.基于隐马尔可夫模型的自动人脸识别方法[J].计算机应用,2004,24(B12):225-227. 被引量:3
  • 2谈昌彬,李一民.基于EHMM的人脸识别[J].云南民族大学学报(自然科学版),2006,15(4):285-288. 被引量:5
  • 3赵振勇,王保华,王力,崔磊.人脸图像的特征提取[J].计算机技术与发展,2007,17(5):221-224. 被引量:18
  • 4Brunelli R, Poggio T. Face Recognition through Geometrical Features[ C ]//Proceedings of ECCV 92. Santa Margherita Ligure, Italy : [ s. n. ], 1992:792-800.
  • 5Yuille A L,Cohen D S,Flallinan P W. Feature extraction from faces using deformable templates [ J ]. International Journal of Computer Vision, 1992,8 (2) :99-111.
  • 6陈盛映,刘盛.基于OpenCV的计算机视觉技术实现[M].北京:科学出版社,2008:283-284.
  • 7Samaria F. Face recognition Using hidden markov model[D]. Cambridge : University of Cambridge, 1994.
  • 8Nefian A V, Hayes M H. Hidden markov models for face recognition[ C ]//Proceedings of the IEEE International Conference on Acoustics Speech and Signal Processing. Seattle, Washington : [ s. n. ] , 1998:2721-2724.
  • 9Kohir V V,Desai U B. Face Recognition Using A DCT-HMM Approach [ C ]//Applications of Computer Vision, 1998. [ s. l. ] : [ s. n. ], 1998:229-230.
  • 10尹飞,冯大政.基于PCA算法的人脸识别[J].计算机技术与发展,2008,18(10):31-33. 被引量:42

共引文献17

同被引文献13

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部