期刊文献+

Thermodynamics and characterization of shape memory Cu-Al-Zn alloys 被引量:2

Cu-Al-Zn形状记忆合金的热力学性能和表征
下载PDF
导出
摘要 The thermodynamic properties and the microstructure, hardness and electrical conductivity of shape memory alloys (SMAs) belonging to ternary Cu?Al?Zn system were studied by Muggianu model and experiment, respectively. The isothermal section of phase diagram at 293 K was calculated using Thermo-Calc software. Experiments were conducted by X-ray diffraction, light optic microscopy, scanning electron microscopy with energy dispersive X-ray spectrometry, hardness and electrical conductivity measurements. The calculated values of thermodynamic properties indicate that Cu shows good miscibility with Al and Zn in all investigated alloys. The microstructural analysis of samples reveals that the structure consists of large and polygonal grains. 使用Muggianu模型计算Cu-Al-Zn三元形状记忆合金的热力学性能,通过实验研究其显微组织、硬度和导电性。使用Thermo-Calc软件计算293 K等温截面图,采用X射线衍射、光学显微镜、扫描电镜(SEM)和X射线能谱分析(EDX)、硬度和导电性测试对其性能进行表征。热力学计算结果表明:在所有研究合金中,Cu与Al和Zn具有优良的混溶性。样品的显微结构分析表明其结构由大的多边形晶粒组成。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第8期2630-2636,共7页 中国有色金属学报(英文版)
基金 Projects(34005,172037)supported by the Ministry of Education,Science and Technological Development of the Republic of Serbia
关键词 THERMODYNAMICS shape memory alloy Cu-Al-Zn alloys HARDNESS electrical conductivity 热力学 形状记忆合金 Cu-Al-Zn合金 硬度 导电性
  • 相关文献

参考文献45

  • 1MILOSAVLJEVIC A, KOSTOV A, TODOROVIC R. Smart materials: Shape memory alloys [J]. Bakar, 2011, 36(l): 39-44. (in Serbian).
  • 2JANKE L, CZADERSKI C, MOTAVALLI M, RUTH J. Applications of shape memory alloys in civil engineering structures: Overview, limits and new ideas [J]. Materials and Structures, 2005, 38(5): 578-592.
  • 3HUANG W M, DING Z, WANG C C, WEI J, ZHAO Y, PURNAWALI H. Shape memory materials [J]. Materials Today, 2010, 13(7-8): 54-61.
  • 4CIMPOESU N, STANCIU S, VIZUREANU P, CIMPOESU R, CRISTIAN ACHI~3EI D, ION1TA I. Obtaining shape memory alloy thin layer using PLD technique [J]. Journal of Mining and Metallurgy Section B: Metallurgy, 2014, 50(1): 69-76.
  • 5HUBER F, MELAND H, RONNING M, VENVIK H, HOLMEN A. Comparison of Cu-Ce-Zr and Cu-Zn-A1 mixed oxide catalysts for water-gas shift [J]. Topics in Catalysis, 2007, 45(1-4): 101-104.
  • 6BREEN J P, ROSS J R H. Methanol reforming for fuel-cell applications: Development of zirconia-containing Cu-Zn-AI catalysts [J]. Catalysis Today, 1999, 51(3-4): 521-533.
  • 7XU H, TAN S. Calorimetric investigation of a Cu-Zn-A1 alloy with two way shape memory [J]. Scripta Metallurgica et Materialia, 2005, 33(5): 749-754.
  • 8PELEGRINA J L, ROMERO R. Calorimetry in Cu-Zn-A1 alloys under different structural and microsla~uctural conditions [J]. Materials Science and Engineering A, 2000, 282(1-2): 16-22.
  • 9CUNIBERTI A, ROMERO R. Differential scanning calorimetry study of deformed Cu-Zn-A1 martensite [J]. Scripta Materialia, 2004 51(4): 315-320.
  • 10LONGAUER S, MAKROCZY P, JANAK G, LONGAUEROVA M. Shape memory effect in a Cu-Zn-AI alloy with dual phase a/fl microstructure [J]. Materials Science and Engineering A, 1999, 273-275: 415-419.

二级参考文献43

  • 1JIAN Hai-gen, JIANG Feng, WEN Kang, JIANG Long, HUANG Hong-feng, WEI Li-li. Fatigue fracture of high-strength AI-Zn-Mg-Cu alloy [J]. Transactions of Nonferrous Metals Society of China, 2009, 19: 1031-1036.
  • 2SENKOV O N, SENKOVA S V, SHAGIEV M R. Effect of Sc on aging kinetics in a direct chill cast AI-Zn-Mg-Cu alloy [J]. Metallurgical and Materials Transactions A, 2008, 39: 1034-1053.
  • 3BAI S, LIU Z Y, LI Y T, HOU Y H, CHEN X. Microstructures and fatigue fxacture behavior of an A1-Cu-Mg-Ag alloy with addition of rare earth Er [J]. Materials Science and Engineering A, 2010, 527: 1806-1814.
  • 4ZHANG Zhuo, CHEN Kang-hua, FANG Hua-chan, QI Xiong-wei, LIU Gang. Effect of Yb addition on strength and fracture toughness of AI-Zn-Mg-Cu-Zr aluminum alloy [J]. Transactions of Nonferrous Metals Society of China, 2008, 18: 1037-1042.
  • 5MONDOLFO L F. Aluminum alloys: Structure and properties [M]. London: Butterworths, 1976.
  • 6RINGER S P, HONO K, SAKURAI T. The effect of trace additions of Sn on precipitation in A1-Cu alloys: An atom probe field ion microscopy study [J]. Metallurgical and Materials Transactions A, 1995, 26:2207-2217.
  • 7SILCOCK J M, FLOWER H M. Comments on a comparison of early and recent work on the effect of trace additions of Cd, In, or Sn on nucleation and growth of 0' in A1-Cu alloys [J]. Scripta Materialia, 2002, 46: 389-394.
  • 8BANERJEE S, ROBI P S, SRINIVASAN A, LAKAVATH P K. Effect of trace additions of Sn on microstructure and mechanical properties of A1-Cu-Mg alloys [J]. Materials & Design, 2010, 31: 4007-4015.
  • 9MOHAMED A M A, SAMUEL F H, SAMUEL A M, DOTY H W, VALTIERRA S. Influence of Tin addition on the microstructure and mechanical properties of AI-Si-Cu-Mg and A1-Si-Mg casting alloys [J]. Metallurgical and Materials Transactions A, 2008, 39: 491-501.
  • 10ASTM E 647-08. Standard test method for measurement of fatigue crack growth rates [S].

共引文献9

同被引文献22

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部