摘要
对于任意的正整数a,设δ(a)表示a的所有除数之和.如果δ(x)=2x,则正整数x称作完全数.设n是一个给定的正整数.如果δ(y)+δ(ny)=2(n+1)y,则n称作n-完全数.为了得到偶完全数和n-完全数之间的关系,本文利用δ(a)的性质,证明了如果x是偶完全数,y是x-完全数,那么有(x,y)=(6,13).
For any positive integer a,letδ(a)denotes the sum of all divisors of a.A positive integer xis called a perfect number ifδ(x)=2x.Let n be a fixed positive integer.A positive integer yis called an n-perfect number ifδ(y)+δ(ny)=2(n+1)y.In order to give a relation between even perfect numbers and n-perfect numbers,by using certain properties ofδ(a),it is proved that if xis an even perfect number and yis an x-perfect number,then we have only(x,y)=(6,13).
出处
《纺织高校基础科学学报》
CAS
2015年第1期18-20,26,共4页
Basic Sciences Journal of Textile Universities
基金
supported by the P.S.F.(2013JZ001)
S.R.P.F.of Shaanxi Provincial Education Department(12JK0883)
N.S.F.of P.R.China(11371291)
关键词
除数和
偶完全数
n-完全数
sum of divisors
even perfect number
n-perfect number