期刊文献+

关于偶完全数和n-完全数(英文)

On the even perfect numbers and n-perfect numbers
下载PDF
导出
摘要 对于任意的正整数a,设δ(a)表示a的所有除数之和.如果δ(x)=2x,则正整数x称作完全数.设n是一个给定的正整数.如果δ(y)+δ(ny)=2(n+1)y,则n称作n-完全数.为了得到偶完全数和n-完全数之间的关系,本文利用δ(a)的性质,证明了如果x是偶完全数,y是x-完全数,那么有(x,y)=(6,13). For any positive integer a,letδ(a)denotes the sum of all divisors of a.A positive integer xis called a perfect number ifδ(x)=2x.Let n be a fixed positive integer.A positive integer yis called an n-perfect number ifδ(y)+δ(ny)=2(n+1)y.In order to give a relation between even perfect numbers and n-perfect numbers,by using certain properties ofδ(a),it is proved that if xis an even perfect number and yis an x-perfect number,then we have only(x,y)=(6,13).
作者 苟素
出处 《纺织高校基础科学学报》 CAS 2015年第1期18-20,26,共4页 Basic Sciences Journal of Textile Universities
基金 supported by the P.S.F.(2013JZ001) S.R.P.F.of Shaanxi Provincial Education Department(12JK0883) N.S.F.of P.R.China(11371291)
关键词 除数和 偶完全数 n-完全数 sum of divisors even perfect number n-perfect number
  • 相关文献

参考文献9

  • 1GUY R K. Unsolved problems in number theory[M]. 3rd ed. Beijing:Science Press,2007.
  • 2ACQUAH P,KONYAGIN S. On prime factors of odd perfect numbers[J]. Int J Number Theory, 2012,8(6): 1537- 1540.
  • 3FLETCHER S A, NIELSON P P, OCHEM P. Sieve methods for odd perfect numbers[J]. Math Comp, 2012,81 (279) : 1753-1776.
  • 4OCHEM P,RAO M. Odd perfect numbers are greater than 10^1500 [J]. Math Comp,2012,81:1869-1877.
  • 5NIELSEN P P. Odd perfect numbers have a least nine distinct prime factors[J]. Math Comp,2007,76,2109-2126.
  • 6KEVIN G H. New techniques for bounds on the total of prime factors of an odd perfect number[J]. Math Comp, 2007, 76 : 2241-2248.
  • 7TAKESHI Goto,YASUO Ohno. Odd perfect numbers have a prime factor exceeding 108 [J]. Math Comp,2008,77: 1859-1968.
  • 8BENCZE Mihaly. About k-perfect numbers[J]. Analele Stiintifice ale Universitatii Ovidius Constanta, 2014,22 (1) : 45- 50.
  • 9HARBORTH H. On h-perfect numbers[J]. Ann Math Inform, 2013,41(1) : 57-62.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部