期刊文献+

Diophantine方程p^x+q^y=z^2(英文) 被引量:4

The Diophantine equation p^x+q^y=z^2
下载PDF
导出
摘要 设p和q是两个奇素数,且p<q.B.Sroysang证明了如果(p,q)=(7,19)或(7,31),则方程px+qy=z2没有正整数解(x,y,z).为了研究这个问题,运用初等方法和指数Diophantine方程的一些性质,证明了一个一般结果,即如果p+q≡2(mod4)和(q|p)=-1,则方程有唯一的正整数解(p,q,x,y,z)=(3,11,5,4,122),其中(q|p)表示Legendre符号. Let pand q be two odd primes with pq.Recently,B.Sroysang proved that if(p,q)=(7,19)or(7,31),then the equation px+qy=z2 has no positive integer solutions(x,y,z).In order to study this problem,by using the elementary number theory methods and the properties of some exponential Diophantine equation,ageneral result is proved that if p+q≡2(mod4)and(q|p)=-1,where(q|p)denotes the Legendre symbol,then the equation has only the positive integer solution(p,q,x,y,z)=(3,11,5,4,122).
作者 李玲 李小雪
出处 《纺织高校基础科学学报》 CAS 2015年第1期42-44,共3页 Basic Sciences Journal of Textile Universities
基金 supported by N.S.F.of P.R.China(11371291) S.R.P.F.of Shaanxi Provincial Education Department(12JK0883)
关键词 指数DIOPHANTINE方程 奇素数 LEGENDRE符号 exponential Diophantine equation odd prime Legendre symbol
  • 相关文献

参考文献12

  • 1SROYSANG B. On the Diphantine equation 7x+31y=x2[J]. Int J Pure Appl Math,2014,92(1) :109-112.
  • 2SROYSANG B. On two Diophantine equations 7x+ 19y = x2 and 7x+ 91y = x2 [J]. Int J Pure Appl Math, 2014,92 (1) : 113-116.
  • 3刘妙华.广义Lebesgue-Nagell方程x^2-4p^(2r)=y^3[J].西安工程大学学报,2013,27(6):821-823. 被引量:3
  • 4BIRKHOFF G D,VANDIVER H S. On the integral divisors of an-bn[J]. Ann Math,1904,5 (2).173-180.
  • 5BUGEAUD Y, MIGNOTTE M. On integers with identical digits[J]. Mathematika, 1999,46(2) :411-417.
  • 6APOSTOL T M. Introduction to analytic number theory[M]. New York:Springer-Verlag, 1976:106-125.
  • 7王枭涵.关于Diophantine方程p^(2m)-Dx^2=1[J].纺织高校基础科学学报,2014,27(1):45-47. 被引量:3
  • 8CIPU M, MIGNOTTE M. On a conjecture on exponential Diophantine equations[J]. Acta Arith, 2009,140 (3): 251-270.
  • 9LUCA F. On the system of Diophantine equations a2+ b2= (m2+1)r and ax+b2=(m2+1)x[J]. Acta Arith, 2012,153 (4) ..373-392.
  • 10MIYAZAKI T,TOGBE A. The Diophantine equation (2am-1)x+ (2m)y = (2am+ 1)x [J]. Int J Number Theory, 2012,8 (8) .. 2035-2044.

二级参考文献27

  • 1乐茂华.关于伪无平方因子函数的3个指数Diophantine方程[J].纺织高校基础科学学报,2004,17(2):93-94. 被引量:2
  • 2柯召 孙琦.关于丢番图方程x^3±1=Dy^2[J].中国科学,1981,12:1453-1456.
  • 3华罗庚.数论导引[M].北京:科学出版社,1979..
  • 4LEBESGUE V A. Sur 1 lmposslblhte en nombers entiers de x" 1 equanon =yz +l[J. Nouv Ann Math,1850,1(9): 178-t81.
  • 5NAGELL T. Sur ' quelques quation / deux " md etermmees[-J. Norsk Mat Forensings Skrifter, 1923, 1 lmposslbdlte de 13(1) :65-82.
  • 6MURIEFAH F S A,AI-RASH[D A. On the Diophantine equation xa -4p" = j'['JT. Arab J Math Sci,2012,18(2) :97-103.
  • 7BUGEAUD Y,SHOREY T N. On the number of solutions of the generaIized Ramanujan-NageU equation[J]. J Reine Angew Math,2001,539 .55-74.
  • 8LE Maohua. A note on the generalized Ramanujan-Nagell equation[J]. J Number Theory,1995,50(2) : 193-201.
  • 9BUGEAUD Y, CAO Z F, MIGNOTTE M. Onsimple K,-groups[J]. J Algebra, 2001,241 (2), 658-668.
  • 10BILU Y, HANROT G,VOUTIER P M. Existence of primitive divisors of Lucas and Lehmer numbers[J]. J Reine An- gew Math ,2001,539 : 75-122.

共引文献5

同被引文献44

  • 1杨仕椿,何波.一类指数丢番图方程的解及m=3的Goormaghtigh猜想[J].浙江大学学报(理学版),2007,34(5):485-487. 被引量:1
  • 2SROYSANG B.On the Diophantine equation 3x+5y=z22[J].International Journal of Pure and Applied Mathematics,2012,81(4):605-608.
  • 3SROYSANG B.On the Diophantine equation 47x+49y=z22[J].International Journal of Pure and Applied Mathematics,2013,89(2):279-282.
  • 4SROYSANG B.On the Diophantine equation 89x+91y=z22[J].International Journal of Pure and Applied Mathematics,2013,89(2):283-286.
  • 5SROYSANG B.On the Diophantine equation 131x+133y=z22[J].International Journal of Pure and Applied Mathematics,2014,90(1):65-68.
  • 6NAGELL T.Sur Fimpossibilité de quelques equations à deux indéterminées[J].Norsk Mat Forenings Skr,1921,13(1):65-82.
  • 7HUA L K.Introduction to number theory[M].Beijing:Science Press,1979.
  • 8LU Yulin,LI Xiaoxue.A note on the equation xy+yz=zx[J].Journal of Inequalities and Applications,2014,2014:170.
  • 9CHOTCHAISTHIT S.On the Diophantine equation 2x+11y=z22[J].Maejo International Journal of Science and Technology,2013,7(2):291-293.
  • 10DENG Moujie.A note on the Diophantine equation (na)x+(nb)y=(nc)z[J].Bulletin of the Australian Mathematical Society,2014,89(2):316-321.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部