摘要
设p和q是两个奇素数,且p<q.B.Sroysang证明了如果(p,q)=(7,19)或(7,31),则方程px+qy=z2没有正整数解(x,y,z).为了研究这个问题,运用初等方法和指数Diophantine方程的一些性质,证明了一个一般结果,即如果p+q≡2(mod4)和(q|p)=-1,则方程有唯一的正整数解(p,q,x,y,z)=(3,11,5,4,122),其中(q|p)表示Legendre符号.
Let pand q be two odd primes with pq.Recently,B.Sroysang proved that if(p,q)=(7,19)or(7,31),then the equation px+qy=z2 has no positive integer solutions(x,y,z).In order to study this problem,by using the elementary number theory methods and the properties of some exponential Diophantine equation,ageneral result is proved that if p+q≡2(mod4)and(q|p)=-1,where(q|p)denotes the Legendre symbol,then the equation has only the positive integer solution(p,q,x,y,z)=(3,11,5,4,122).
出处
《纺织高校基础科学学报》
CAS
2015年第1期42-44,共3页
Basic Sciences Journal of Textile Universities
基金
supported by N.S.F.of P.R.China(11371291)
S.R.P.F.of Shaanxi Provincial Education Department(12JK0883)