摘要
设n>1是正整数,p是大于3的奇素数.本文运用初等数论的方法,结合广义Lebesgue-Nagell方程和广义Fermat方程的性质,研究了丢番图方程4x2n-py2=1的整数解,并证明了对于任意奇数n,此方程没有正整数解(x,y).
Let n be a positive integer with n〉1,and let pbe an odd prime with p〉3.By using the elementary and the properties of the generalized Lebesgue-Nagell equations and the generalized Fermat equations,the integer solutions of the equation 4x2n-py2=1is studied.It is prove that this equation has no positive integer solution(x,y)for 2n.
出处
《纺织高校基础科学学报》
CAS
2015年第1期45-47,共3页
Basic Sciences Journal of Textile Universities
基金
陕西省科技厅科学技术研究发展计划项目(2013JQ1019)
延安大学自然科学基金资助项目(YDK201101)