期刊文献+

实赋范线性空间中的近似平方R-正交 被引量:1

Approximate square R-orthogonality in real normed linear space
下载PDF
导出
摘要 在实赋范线性空间中,给出了近似平方R-正交的定义和性质.运用算子论方法,证明了近似平方R-正交是近似B-正交,给出了近似保平方R-正交映射的定义,得到了有界线性映射是近似保平方R-正交映射的一些充分条件. In real normed linear space,the definition and properties of approximate square R-orthogonality are given.Using the operator theory,it is proved that the approximate square Rorthogonality is approximate B-orthogonality,next the definition of approximate square R-orthogonality preserving mapping is given.Finally,some sufficient conditions for a bounded linear mapping to be an approximate square R-orthogonality preserving mapping are abtained.
作者 孔亮
出处 《纺织高校基础科学学报》 CAS 2015年第1期58-61,71,共5页 Basic Sciences Journal of Textile Universities
基金 陕西省科技厅自然科学基础研究计划项目(2012JM1018) 陕西省教育厅科学研究计划项目(2013JK0570) 商洛学院科研项目(14SKY016)
关键词 R-正交 近似平方R-正交 近似保平方R-正交映射 R-orthogonality approximate square R-orthogonality approximate square R-orthogonality preserving mapping
  • 相关文献

参考文献13

  • 1FATHI B S. An extension of the notion of orthogonality to Banaeh spaces[J]. J Math Anal Appl, 2002,267 (1) :29-47.
  • 2MAZAHERI H,VAEZPOUR S M. Orthogonality and e-orthogonality in Banach spaees[J]. Aust J Math Anal Appl, 2005,2(1) :1-5.
  • 3MAZAHERI H,MODARRES S M S. e-orthogonality in vector space[J]. Int J Math Anal,2007,13(1) :613-617.
  • 4PAUL K,SAIN D,JHA K. On strong orthogonality and strictly convex normed linear spaces[J]. J Inequal Appl, 2013 (242) : 1-7.
  • 5付向红,黎永锦.Banach空间的非常B-正交性[J].中山大学学报(自然科学版),2008,47(1):116-117. 被引量:5
  • 6杨冲,张登华.Banach空间中Birkhoff正交性的刻画[J].数学的实践与认识,2008,38(9):187-192. 被引量:4
  • 7WOJCIK P. Linear mappings preserving p-orthogonality[J]. J Math Anal Appl,2012,386 (1) :171-176.
  • 8DRAGOMIR S S. On approximation of continuous linear functionals in normed linear spaces[J]. An Univ Timisoara Ser Stiint Mat, 1991,29 (1) : 51-58.
  • 9CHMIELINSKI J. Linear mappings approximately preserving orthogonality[J]. J Math Anal Appl,2005,304(1) :158-169.
  • 10CHMIELINSKI J. Stability of the orthogonality preserving property in finite-dimensional inner product spaces[J]. J Math Anal Appl,2006,318(2):433-443.

二级参考文献25

  • 1Li C K. Orthogonality of matrices [J ]. Linear Algebra Appl, 2002,347: 115-122:
  • 2James R C. Orthogonality and linear functionals in normed linear space[J]. Trans Amer Math Soc, 1947,12:265- 295.
  • 3Abatzoglou T J. Norm derivatives on spaces of operators[J]. Math Ann, 1979,239 (2):129-135.
  • 4Kittaneh F R Younis. Smooth pionts of certain operator spaces[J]. Integral Equations Operator Theory, 1990, 13 (6) : 849-855.
  • 5Singer I. Unghiuri abstracte si functii trigonometrice in spatii Banach space[J]. Bul Stint Acad R P Sect Stiint Mat Fiz, 1957,9 (4) : 29-42.
  • 6Roberts B D. On the geometry Of abstract vextor spaces[J]. Tohoku Math J, 1934,39: 42-59.
  • 7James R C. Orthogonality in normed linear space[J]. Duke Math J, 1945,12 : 291-302.
  • 8Birkhoff G. Orthogonality in linear metric space[J]. Duke Math J.1935,1: 169-172.
  • 9Saidi B F. An extension of the notion of orthogonality to Banach spaces[J]. J Math Anal Appl,2002,267(1):29- 47.
  • 10Bhatia R. Orthogonality of matrices and some distance problems [J]. Linear Algebra Appl, 1999,287 (1):77-85.

共引文献8

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部