期刊文献+

基于对象的视频摘要算法的实现与加速 被引量:1

Implementation and Acceleration of Object-Based Video Synopsis Algorithm
下载PDF
导出
摘要 现有基于对象的视频摘要算法较少考虑计算效率,导致其难以满足大规模安防监控领域的性能要求.为此,文中提出了改进的基于对象的视频摘要算法,通过降低帧率和分辨率、运动片段检测以及基于重心的对象跟踪等策略来提升算法效率.此外,为充分挖掘CPU和GPU的计算能力,设计了相应的多线程算法,并对关键步骤进行GPU优化,以进一步加速算法性能.实验结果表明,改进算法和加速策略可以大幅提升视频摘要的计算速度. As the existing object-based video synopsis algorithms cannot meet the actual demands in large-scale surveillance field due to the ignorance of computation efficiency,an improved algorithm,which improves the computation efficiency by reducing frame rate and resolution,detecting motion segments and tracking objects on the basis of gravity center,is proposed. Furthermore,in order to utilize the computing power of CPU and GPU fully,a multithread strategy and a GPU programming are conducted to accelerate the execution of the algorithm. Experimental results show that the improved algorithm and the proposed acceleration strategy both improve the computation efficiency of video synopsis greatly.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第5期92-99,共8页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61402183 61272382) 广东省科技计划项目(2013B010401005) 广东省自然科学基金资助项目(S2012030006242) 广东省教育部产学研结合项目(2013B090500030) 广州市科技攻关项目(2013J4300056) 广州市智慧城市专项(2014Y2-00133) 广州市科技云计算技术研发及产业化专项(2013Y2-00065)~~
关键词 视频摘要 图形处理单元 安防监控 video synopsis graphic processing unit surveillance
  • 相关文献

参考文献15

  • 1Rav-Acha A, Pritch Y, Peleg S. Making a long video short : dynamic video synopsis [ C ] //Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York : IEEE, 2006 : 435- 441.
  • 2Priteh Y, Rav-Aeha A, Peleg S. Nonehronologieal video synopsis and indexing [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2008,30 (11 ):1971- 1984.
  • 3Pritch Y, Ratoviteh S, Hendet A, et al. Clustered synopsis of surveillance video [ C ]//Proceedings of the Sixth IEEE Intemational Conference on Advanced Video and Signal Based Surveillance. Genova: IEEE,2009:195-200.
  • 4Pritch Y, Rav-Acha A, Gutman A, et al. Webcam synop- sis: peeking around the world [ C ]//Proceedings of IEEE the l lth International Conference on Computer Vision. Rio de Janeiro: IEEE ,2007 : 1-8.
  • 5Nie Yongwei, Xiao Chunxia, Sun Hanq-iu, et al. Compact video synopsis via global spatiotemporal optimization [J]. IEEE Transactions on Visualization and Computer Graphics ,2013,19 (10) : 1664-1676.
  • 6Zhu Xiatian, Loy Chen Chang, Gong Shaogang. Video sy- nopsis by heterogeneous multi-source correlation [ C ]// Proceedings of 2013 IEEE International Conference on Computer Vision. Sydney:IEEE,2013:81-88.
  • 7Fu Wei, Wang Jinqiao, Gui Liangke, et al. Online video synopsis of structured motion [ J ]. Neurocomputing,2014, 135:155-162.
  • 8Xu L,Liu H,Yan X,et al. Optimization method for trajec- tory combination in surveillance video synopsis based on genetic algorithm [ J ]. Journal of Ambient Intelligence and Humanized Computing, 2015, doi: 10. 1007/s12652- 015-0278-7.
  • 9Ye G, Liao W, Dong J, et al. A surveillance video index and browsing system based on object flags and video sy- nopsis [ C]//Proceedings of 2015 MultiMedia Modeling. Sydney:Springer International Publishing,2015:311-314.
  • 10Zhong Rui, Hu Ruimin, Wang Zhongyuan, et al. Fast sy- nopsis for moving objects using compressed video [ J ]. IEEE Signal Processing Letters ,2014,21 (7) :834-838.

二级参考文献16

  • 1Total S,Vargas M, Barrero F, et al. Improved sigma-delta background estimation for vehi('le detection [ J ]. Electro- nics I.etters ,2009,45 ( 1 ) :32-34.
  • 2Song Jia-sheng,Hu Guo-qing. Combinational Gaussian back- ground modeling method based on analysis of spatio-tem- poral entropy [ J ]. Journal of South China University of Techhology : Natural Science Edition, 2012,40 ( 9 ) : 116- 122.
  • 3Kim K, Chalidabhongse T H, Harwood D, et al. Real-time foreground-background segmentation using codebook model [J].Real-Time :maging, 2005,11 ( 3 ) : 72 - 185.
  • 4Wu Mingjun, Peng Xianrong. Spatio-temporal context for codebook-based dynamic background subtraction [ J]. In- ternational Journal of Electronics and Communications, 2010,64 (8) :739-747.
  • 5Guo Jing-Ming, Liu Yun-Fu, Hsia Chih-Hsien, et al. Hie- rarchical method for foreground detection using codebook model [ J ]. IEEE Transactions on Circuits and Systems for Video Technology, 2011,21 ( 6 ) : 804- 815.
  • 6Elgammal A, Duraiswami R, Harwood D, et al. Back- ground and foreground modeling using nonparametric ker- nel density estimation for visual surveillance [ J ]. Pro- ceedings of the IEEE,2002,90 ( 7 ) : 1151 - 1163.
  • 7Tavakkoli A, Nicolescu M, Bebis G. Automatic statistical object detection for visual surveillance [ C] //Proceedings of Southwest Symposium on Image Analysis and Interpre- tation. Denver : IEEE ,2006 : 144-148.
  • 8Tavakkoli A,Nicolescu M, Bebis G, et al. Non-parametric statistical background modeling for efficient foreground region detection [ J ]. Machine Vision and Applications, 2008,20 ( 6 ) : 395- 409.
  • 9Reddy V, Sanderson C, Sanin A, et al. MRF-based back- ground initialisation for improved foreground detection in cluttered surveillance videos [ C ] //Proceedings of the 10th Asian Conference on Computer Vision. Berlin:Springer- Verlag,2010:547-559.
  • 10Crivelli Tom,is, Bouthemy Patrick, Cernuschi-Frias Bruno, et al. Simultaneous motion detection and background recon- struction with a conditional mixed-state Markov random field [ J ]. International Journal of Computer Vision, 2011,94(3) :295-316.

共引文献1

同被引文献2

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部