期刊文献+

基于JointBoost I2C距离度量的图像分类方法 被引量:1

Image Classification Based on JointBoost I2C Distance Metric
下载PDF
导出
摘要 基于图像到类(I2C)距离度量的图像分类是一种新颖的方法,但其分类性能仍有待提高.为此,文中提出了一种基于JointBoost I2C距离度量的图像分类方法.首先生成原型特征集,该集合中的样本具有代表性,故计算测试图像到该原型特征集的距离更有效;然后根据JointBoost算法的思想,联合多个I2C距离度量生成一个强分类器,并将空间信息融合到强分类器中.实验结果表明,该方法在图像分类实验中具有更高的分类性能. Image classification on the basis of image-to-class( I2C) distance metric is a novel method. However,its classification performance needs to be further improved. In this paper,a new image classification method on the basis of Joint Boost I2 C distance metric is proposed. In this method,a prototype feature set with representative samples is generated,which makes the calculation of distance from the test image to the set more effective. Then,on the basis of Joint Boost algorithm,multiple I2 C distance metrics are combined to generate a strong classifier for integrating spatial information. Experimental results show that the proposed method is of higher performance for image classification.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第5期114-119,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(50978106 60273064) 江苏省高校自然科学研究项目(14KJB520038 13KJD510007)~~
关键词 图像分类 JointBoost 图像到类距离 原型特征集 image classification JointBoost image to class distance prototype feature set
  • 相关文献

参考文献18

  • 1梁鹏,黎绍发,覃姜维.基于局部类别一致k均值聚类的目标识别方法[J].华南理工大学学报(自然科学版),2011,39(2):118-124. 被引量:3
  • 2Felzenszwalb P F, Girshick R B, McAllester D, et al. Ob- ject detection with diseriminafively trained part-based models [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010,32 (9) : 1627-1645.
  • 3Huang Z F,Yang W, Wang Y, et al. Latent Boosting for action recognition [ C ] // Proceedings of British Machine Vision Conference. Dundee: BMVA ,2011 : 1-11.
  • 4Wu R, Yu Y, Wang W. SCALE: supervised and cascaded laplacian eigenmaps for visual object recognition based on nearest neighbors [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Oregon:IEEE, 2013 : 867 - 874.
  • 5Xu Y, Zhu Q, Fan Z, et al. Coarse to fine K nearest neigh- bor classifier [ J ]. Pattern Recognition Letters, 2013,34 (9) :980-986.
  • 6Boiman O, Shechtman E, Irani M. Indefense of nearest- neighbor based image classification [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recog- nition. Anchorage : IEEE,2008 : 1- 8.
  • 7Wang Z, Hu Y, Chia L T. Learning instance-to-class dis- tance for human action recognition [ C ]//Proceedings of the 16th IEEE International Conference on Image Proces- sing. Cairo: IEEE, 2009 : 3545- 3548.
  • 8Huang Y,Xu D, Cham T J. Face and human gait recogni- tion using image-to-class distance [ J]. IEEE Transactions on Circuits and Systems for Video Technology, 2010,20 (3) :431-438.
  • 9Timofte R, Tuytelaars T, van Cool L. Naive bayes image classification : beyond nearest neighbors [ C ] //Procee- dings of Asian Conference of Computer Vision. Daejeon: Springer,2012:689-703.
  • 10Wang Z, Hu Y, Chia L T. Image-to-class distance metric learning for image classification [ C ]//Proceedings of European Conference on Computer Vision. Crete:Sprin- ger,2010:709-719.

二级参考文献17

  • 1Murase H, Nayar S K. Visual learning and recognition of 3D objects from appearance [ J ]. International Journal of Computer Vision, 1995,14 ( 1 ) : 5-24.
  • 2Schiele B, Crowley J. Recognition without correspondence using multi dimensional receptive field histograms [ J ]. International Journal of Computer Vision, 2000,36 ( 1 ) : 31-50.
  • 3Lowe D. Distinctive image features from scale invariant keypoints [ J ]. International Journal of Computer Vision, 2004,60(2) :91-110.
  • 4Liang P, Li S F, Wang C. A new image matching algorithm based on scale adapted interest point detection [ C ] // Proceedings of International Conference on Information and Automation. Zhuhai :IEEE ,2009:330-335.
  • 5Li F F, Perona P. A bayesian hierarchical model for learning natural scene categories [ C ]// Proceedings of International Conference on Computer Vision and Pattern Recognition. San Diego : IEEE,2005:524-531.
  • 6Lazebnik S, Schmid C, Ponce J. A sparse texture representation using local affine regions [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006,27 ( 8):1265-1278.
  • 7Bouchard G, Triggs B. A hierarchical part-based model for visual object categorization [ C ]//Proceedings of International Conference on Computer Vision and Pattern Recognition. San Diego:IEEE,2005:710-715.
  • 8Ommer B, Buhmann J M. Learning the compositional nature of visual object categories for recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(3 ) :501-515.
  • 9Mikolajcyk K, Schmid C. An affine invariant interest point detector [ C ] //Proceedings of European Conference on Computer Vision. Copenhagen : IEEE ,2002 : 128-142.
  • 10Savarese S,Li F F. 3D generic object categorization,localization and pose estimation [ C ]//Proceedings of International Conference of Computer Vision. Brazil : IEEE, 2007:1-8.

共引文献2

同被引文献9

引证文献1

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部