摘要
基于图像到类(I2C)距离度量的图像分类是一种新颖的方法,但其分类性能仍有待提高.为此,文中提出了一种基于JointBoost I2C距离度量的图像分类方法.首先生成原型特征集,该集合中的样本具有代表性,故计算测试图像到该原型特征集的距离更有效;然后根据JointBoost算法的思想,联合多个I2C距离度量生成一个强分类器,并将空间信息融合到强分类器中.实验结果表明,该方法在图像分类实验中具有更高的分类性能.
Image classification on the basis of image-to-class( I2C) distance metric is a novel method. However,its classification performance needs to be further improved. In this paper,a new image classification method on the basis of Joint Boost I2 C distance metric is proposed. In this method,a prototype feature set with representative samples is generated,which makes the calculation of distance from the test image to the set more effective. Then,on the basis of Joint Boost algorithm,multiple I2 C distance metrics are combined to generate a strong classifier for integrating spatial information. Experimental results show that the proposed method is of higher performance for image classification.
出处
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2015年第5期114-119,共6页
Journal of South China University of Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(50978106
60273064)
江苏省高校自然科学研究项目(14KJB520038
13KJD510007)~~