期刊文献+

基于大间隔编码的空间非负矩阵分解 被引量:1

Spatial Non-Negative Matrix Factorization Based on Max-Margin Coding
下载PDF
导出
摘要 虽然基于局部的表示方法在图像处理中具有很好的鲁棒性,但非负矩阵分解只有隐式局部约束,导致分解不唯一和基图像不够局部.另外,局部性与判别性作为样本表示的重要性质几乎没有在非负矩阵分解中被同时考虑过.为此,文中提出了基于大间隔编码的空间非负矩阵分解,将图像数据看作像素构成的二维网络,借鉴网络中的知识将空间信息嵌入基图像,不但施加了显式的局部约束,而且能够弥补数据向量化损失的空间信息.同时,利用大间隔约束学到的额外一维空间平衡重建误差和判别性约束对基图像的影响.在AR数据库和扩展的Yale B数据库上的人脸识别实验结果表明,相比于非负矩阵及其他几种典型的扩展方法,基于大间隔编码的空间非负矩阵分解更加鲁棒. Although the parts-based representation results in strong robustness in image processing,the local constraint in non-negative matrix factorization( NMF) is implicit,which leads to insufficient uniqueness and locality.Meanwhile,as two important property indexes,locality and discriminant in feature extraction are seldom considered in NMF simultaneously. In order to solve this problem,a discriminative NMF on the basis of max-margin coding is proposed. In this method,image data are regarded as a 2D network of pixels,and,on the basis of network knowledge,spatial information is embedded into basis images,which not only imposes an explicit local constraint but also compensates the spatial information loss caused by data vectorization. Additionally,an extra 1D space learned from maxmargin constraint is adopted to balance the effects of reconstruction error and discriminative constraint on basis images. Experimental results on AR and extended Yale B databases for face recognition show that,in comparison with NMF and some of its variants,the proposed max-margin coding-based spatial NMF is more robust.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第5期120-125,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61073112 61373060) 江苏省自然科学基金资助项目(BK2012793) 教育部博士点基金资助项目(20123218110033)~~
关键词 模式分类 非负矩阵分解 空间约束 判别的子空间表示 大间隔约束 pattern classification non-negative matrix factorization spatial constraint discriminative subspace representation max-margin constraint
  • 相关文献

参考文献16

  • 1Bengio Y, Courvilte A, Vincent P. Representation lear- ning: a review and new perspectives [ J ]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2013,35 (8) :1798-1828.
  • 2Lee D D, Seung H S. Learning the parts of objects by non- negative matrix factorization [J]. Nature, 1999,401 (6755) : 788-791.
  • 3Donoho D,Stodden V. When does non-negative matrix fac- torization give a correct decomposition into parts [ M ]. Ad- vances in Neural Information Processing Systems 16. Cam- bridge: MIT Press, 2003 : 1141-1148.
  • 4Li S Z, Hou X W, Zhang H J, et al. Learning spatially lo- calized, parts-based representation [ C ]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Colorado Springs:IEEE, 2001 :I-207-I-212.
  • 5Hoyer P O. Non-negative matrix factorization with sparse- ness constraints [ J ]. Journal of Machine Learning Re- search,2004,5 : 1457-1469.
  • 6Zheng W S, Lai J H, Liao S, et al. Extracting non-negative basis images using pixel dispersion penalty [ J ]. Pattern Recognition, 2012,45 ( 8 ) : 2912 - 2926.
  • 7张颖,余英林.鲁棒性增强的ART1神经网络[J].华南理工大学学报(自然科学版),1994,22(5):72-79. 被引量:1
  • 8Wang Yuan, Jia Yunde. Fisher non-negative matrix facto- rization for learning local features [ C ] // Proceedings of Asian Conference on Computer Vision. Jeju island:Sprin- ger, 2004 : 27 - 30.
  • 9Zafeiriou S, Tefas A, Bueiu I, et al. Exploiting discrimi- nant information in normegative matrix faetorization with application to frontal face verification [ J]. IEEE Transac-tions on Neural Networks ,2006,17 ( 3 ) :683-695.
  • 10Kumar B, Kotsia I, Patras I. Max-margin non-negative matrix factorization [ J ]. Image and Vision Computing, 2012,30(4) :279-291.

二级参考文献1

  • 1张立明,人工神经网络的模型及其应用,1993年

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部