期刊文献+

双模纠缠场中原子量子关联的产生

The Birth of Atoms' Quantum Correlation in a Bimodal Cavity
原文传递
导出
摘要 通过数值计算的方法,研究了两原子依次通过双模纠缠场时量子关联的产生,讨论了双模场的初始纠缠对两原子的纠缠和量子失谐的影响。结果表明:双模场的初始纠缠为零时,两原子的纠缠和量子失谐为零,初始双模场的纠缠不为零时,纠缠和量子失谐不为零并随时间演化;初始双模场的纠缠越大,两原子的纠缠和量子失谐越大;原子的两种初态(|e1,e2〉,|g1,g2〉)下,纠缠和量子失谐产生的阈值时间与双模场的纠缠度没有关系。 The birth of quantum correlation of two atoms going through a bimodal cavity one after another was investigated by means of numerical analysis method,and the effects of initial entanglement of bimodal cavity on entanglement and quantum discord were analyzed. The results showed that, when the initial entanglement of the bimodal cavity is zero, the entanglement and quantum discord of two atoms is zero. While the initial entanglement of the bimodal cavity is nonzero, the entanglement and quantum discord of two atoms is also nonzero and evolve with the time. The larger of initial entanglement of bimodal cavity is, the larger of entanglement and quantum discord of two atoms is. The threshold time for creation of the entanglement and quantum discord has no relation to entanglement of bimodal cavity in the case of [ e1 ,e2 ), g1 , g2 )
出处 《量子光学学报》 北大核心 2015年第3期222-227,共6页 Journal of Quantum Optics
基金 国家自然科学基金(61178012) 聊城大学东昌学院科研项目(2015LG009)
关键词 量子纠缠 量子失谐 双模腔 共生纠缠 quantum entanglement quantum discord bimodal cavity concurrence
  • 相关文献

参考文献23

  • 1Bennett C H, Brassard G, Crepeau C, et at, Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels[J]. Phys Rev Lett, 1993.70: 1895-1899.
  • 2Zukowshi M, Zeilinger A, Horne M A, et at, "Event-ready-detectors" Bell Experiment via Entanglement Swapping[J]. Phys Rev Lett, 1993,71: 4287-4290,.
  • 3Bennett C H, Wiesner SJ, Communication via One-and Two-particle Operators on Einstein-Podolsky-Rosen States[J]. Phys Rev Lett, 1992 ,69: 2881-2884,.
  • 4Ekert A K. Quantum Cryptography Based on Bell's Theorern[J]. Phys Rev Lett. 1991 ,67: 661-663.
  • 5Adriano Barenco, David Deutsch, Artur Ekert , et al . Conditional Quantum Dynamics and Logic Gates[J], Phys Rev Lett, 1995,74:4083-4086,.
  • 6Dakic B, Vedral Vv Brukner C, Necessary and Sufficient Condition for Nonzero Quantum Discord[J]. PhysRev Lett, 2010,105:190502,.
  • 7Knill E, Laflamme R Power of One Bit of Quantum Information[J], Phys Rev Lett, 1998 ,81: 5672-5675.
  • 8Olliver H, Zurek W, H, Quantum Discord: A Measure of the Quantumness of Correlations[J], Phys Rev Lett, 2001,88: 017901.
  • 9Henderson L, Vedral V, Classical Quantum and Total Correlations[J],J Phys A, 2001,34: 6899,.
  • 10Ali M, Rau A. R. r. Alber G, Quantum Discord for Two-qubit X States[J]. Phys Rev A, 2010 ,81: 042105.

二级参考文献43

  • 1Nielsen M A, Chuang I L 2000 Quantum Computation and Information (Cambridge: Cambridge University Press).
  • 2Bose S, Fuentes-guridi I, Knight P L, Vedral V 2001 Phys. Rev. Lett. 87 050401.
  • 3Phoenix S J D, Barnett S M 1993 J. Mod. Opt. 40 979.
  • 4Ghosh B, Majumdar A S, Nayak N 2007 Int. J. Quantum. Inf. 5 169.
  • 5Ghosh B, Majumdar A S, Nayak N 2008 J. Phys. B: At. Mol. Opt. Phys. 41 065503.
  • 6Ateto M S 2007 Int. J. Quantum. Inf. 5 535.
  • 7Ateto M S 2009 Int. J. Theor. Phys. 48 545.
  • 8单传家, 刘继兵, 陈涛, 刘堂昆, 黄燕霞, 李宏 2010 物理学报 59 6799.
  • 9Guo J L, Xia Y, Song H S 2010 Chin. Phys. B 19 010310.
  • 10Luo C L, Miao L, Zheng X L, Chen Z H, Liao C G 2011 Chin. Phys. B 20 080303.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部