摘要
An in situ ultrahigh-strength ductile Al50Sc50 bulk alloy is produced by the copper mold casting method with a composite microstructure of micron-/submicron-sized grains and nanoscale twins. According to the microstruc- rural investigations, hierarchical nanotwinned lamellar AISc bundles with embedded micron-/submicron-sized AI2Sc and AISc2 are observed. The as-cast alloy displays a unique act of ultrahigh strength of -1.85 GPa to- gether with pronounced work hardening and a large plasticity of -14%. Further microstructural investigations on deformed specimens indicate that abundant hierarchical nanotwinned lamellar AISc bundles are effective to dissipate localization of shear stress or block dislocations from spreading throughout the alloy and hinder the propagation of mierocracks formed by local stress transition.
An in situ ultrahigh-strength ductile Al50Sc50 bulk alloy is produced by the copper mold casting method with a composite microstructure of micron-/submicron-sized grains and nanoscale twins. According to the microstruc- rural investigations, hierarchical nanotwinned lamellar AISc bundles with embedded micron-/submicron-sized AI2Sc and AISc2 are observed. The as-cast alloy displays a unique act of ultrahigh strength of -1.85 GPa to- gether with pronounced work hardening and a large plasticity of -14%. Further microstructural investigations on deformed specimens indicate that abundant hierarchical nanotwinned lamellar AISc bundles are effective to dissipate localization of shear stress or block dislocations from spreading throughout the alloy and hinder the propagation of mierocracks formed by local stress transition.
基金
Supported by the Scientific Research Foundation of Xi’an University of Technology under Grant No 101-451115007
the National Basic Research Program of China under Grant No 2007CB613900
the National Natural Science Foundation of China under Grant No 51174161
the Pivot Innovation Team of Shaanxi Electric Materials and Infiltration Technique under Grant No 2012KCT-25