摘要
The quantum interference pattern in the double-slit experiment is qualitatively reproduced by using the entangled trajectory molecular dynamics method and compared with previous works. We compare entangled trajectory and classical trajectory with the same initial state in the phase space to show quantum effect in the evolution of trajectories. It is involved with breakdown in the statistical independence of the trajectories. Although our result does not agree well with exact quantum calculation in quantitatively with loss of part of interference pattern peaks, we can offer a reasonable explanation by analyzing quantum interference of two Gaussian wave packets in the phase space.
The quantum interference pattern in the double-slit experiment is qualitatively reproduced by using the entangled trajectory molecular dynamics method and compared with previous works. We compare entangled trajectory and classical trajectory with the same initial state in the phase space to show quantum effect in the evolution of trajectories. It is involved with breakdown in the statistical independence of the trajectories. Although our result does not agree well with exact quantum calculation in quantitatively with loss of part of interference pattern peaks, we can offer a reasonable explanation by analyzing quantum interference of two Gaussian wave packets in the phase space.
基金
Supported by the Scientific Research Foundation of Shaanxi University of Technology under Grant No SLGKYQD2-03
the National Natural Science Foundation of China under Grant Nos 11374191 and 11347156
the Research Fund for the Doctoral Program of Higher Education under Grant No 20130131110005