期刊文献+

Laser-driven flier impact experiments at the SG-III prototype laser facility

Laser-driven flier impact experiments at the SG-III prototype laser facility
下载PDF
导出
摘要 Laser-driven flier impact experiments have been designed and performed at the SG-III prototype laser facility. The continuum phase plate(CPP) technique is used for the 3 ns quadrate laser pulse to produce a relatively uniform irradiated spot of 2 mm. The peak laser intensity is 2.7×10^13W/cm^2 and it accelerates the aluminum flier with a density gradient configuration to a high average speed of 21.3 km/s, as determined by the flight-of-time method with line VISAR. The flier decelerates on impact with a transparent silica window, providing a measure of the flatness of the flier after one hundred microns of flight. The subsequent shock wave acceleration, pursuing, and decay in the silica window are interpreted by hydrodynamic simulation. This method provides a promising method to create unique conditions for the study of a material's properties. Laser-driven flier impact experiments have been designed and performed at the SG-III prototype laser facility. The continuum phase plate(CPP) technique is used for the 3 ns quadrate laser pulse to produce a relatively uniform irradiated spot of 2 mm. The peak laser intensity is 2.7×10^13W/cm^2 and it accelerates the aluminum flier with a density gradient configuration to a high average speed of 21.3 km/s, as determined by the flight-of-time method with line VISAR. The flier decelerates on impact with a transparent silica window, providing a measure of the flatness of the flier after one hundred microns of flight. The subsequent shock wave acceleration, pursuing, and decay in the silica window are interpreted by hydrodynamic simulation. This method provides a promising method to create unique conditions for the study of a material's properties.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期319-323,共5页 中国物理B(英文版)
关键词 laser-driven flier VISAR shock wave laser-driven flier,VISAR,shock wave
  • 相关文献

参考文献19

  • 1Jones A H, Isbell W M and Maiden C J 1966 J. Appl. Phys. 37 3493.
  • 2Gupta Y M, Duvall G E and Fowles G R 1975 J. Appl. Phys. 46 532.
  • 3Cauble R, Phillion D W, Hoover T J, Holmes N C, Kilkenny J D and Lee R W 1993 Phys. Rev. Lett. 70 2102.
  • 4Kadonoa T, Yoshida, Takahashi E, Matsushima I, Owadano Y, Ozaki N, Fujita K, Nakano M, Tanaka K A, Takenaka H and Kondo K 2000 J. Appl. Phys. 88 2943.
  • 5Tanaka K A, Hara M, Ozaki N, Sasatani Y, and Anisimov S I, Kondo K, Nakanoa M and Nishihara K, Takenaka H, Yoshida M and Mima K 2000 Phys. Plasmas 7 676.
  • 6Ozaki N, Sasatani Y, Kishida K, Nakano M, Miyanaga M, Nagai K, Nishihara K, Norimatsu T, Tanaka K A, Fujimoto F, Wakabayashi K, Hattori S, Tange T, Kondo K, Yoshida M, Kozu N, Ishiguchi M and Takenaka H 2001 J. Appl. Phys. 89 2571.
  • 7Wang F, Peng X S, Liu S Y, Li Y S, Jiang X H and Ding Y K 2011 Acta Phys. Sin. 60 025202 (in Chinese).
  • 8Fu S Z, Gu Y, Huang X G, Wu J, He J H, Ma M X, Luo P Q and Zhang Y H 2002 Phys. Plasmas 9 3201.
  • 9Okada K, Wakabayashi K, Takenaka H, Nagao H, Kondo K, Ono T, Takamatsu K, Ozika N, Nagai K, Nakai M, Tanaka K A and Yoshida M 2003 International Journal of Impact Engineering 29 497.
  • 10Ozaki N, Sasatani Y, Kishida K, Nakano M, Miyanaga M, Nagai K, Nishihara K, Norimatsu T, Tanaka KA, Fujimoto Y, Wakabayashi K, Hattori S, Tange T, Kondo K, Yoshida M, Kozu N, Ishiguchi M and Takenaka H 2001 J. Appl. Phys. 89 2571.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部