期刊文献+

Gas adsorption and accumulation on hydrophobic surfaces:Molecular dynamics simulations 被引量:3

Gas adsorption and accumulation on hydrophobic surfaces:Molecular dynamics simulations
下载PDF
导出
摘要 Molecular dynamics simulations show that the gas dissolved in water can be adsorbed at a hydrophobic interface and accumulates thereon. Initially, a water depletion layer appears on the hydrophobic interface. Gas molecules then enter the depletion layer and form a high-density gas-enriched layer. Finally, the gas-enriched layer accumulates to form a nanobubble. The radian of the nanobubble increases with time until equilibrium is reached. The equilibrium state arises through a Brenner–Lohse dynamic equilibrium mechanism, whereby the diffusive outflux is compensated by an influx near the contact line. Additionally, supersaturated gas also accumulates unsteadily in bulk water, since it can diffuse back into the water and is gradually adsorbed by a solid substrate. Molecular dynamics simulations show that the gas dissolved in water can be adsorbed at a hydrophobic interface and accumulates thereon. Initially, a water depletion layer appears on the hydrophobic interface. Gas molecules then enter the depletion layer and form a high-density gas-enriched layer. Finally, the gas-enriched layer accumulates to form a nanobubble. The radian of the nanobubble increases with time until equilibrium is reached. The equilibrium state arises through a Brenner–Lohse dynamic equilibrium mechanism, whereby the diffusive outflux is compensated by an influx near the contact line. Additionally, supersaturated gas also accumulates unsteadily in bulk water, since it can diffuse back into the water and is gradually adsorbed by a solid substrate.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期392-398,共7页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China(Grant No.21376161)
关键词 HYDROPHOBIC molecular dynamics NANOBUBBLE hydrophobic,molecular dynamics,nanobubble
  • 相关文献

参考文献42

  • 1Miller J, Hu Y, Veeramasuneni S and Lu Y 1999 Colloids Surf. A 154 137.
  • 2Parker J L, Claesson P M and Attard P 1994 J. Phys. Chem. 98 8468.
  • 3Lou S T, Ouyang Z Q, Zhang Y, Li X J, Hu J, Li M Q and Yang F J 2000 J. Vac. Sci. Technol. B 18 2573.
  • 4Tyrrell J W G and Attard P 2001 Phys. Rev. Lett. 87 176104.
  • 5Holmberg M, Kühle A, Morch K A and Boisen A 2003 Langmuir 19 10510.
  • 6Steitz R, Gutberlet T, Hauss T, Kl?sgen B, Krastev R, Schemmel S, Simonsen A C and Findenegg G H 2003 Langmuir 19 2409.
  • 7Simonsen A C, Hansen P L and Kl?sgen B 2004 J. Colloid Interface Sci. 273 291.
  • 8Borkent B, Dammer S, Sch?nherr H, Vancso G and Lohse D 2007 Phys. Rev. Lett. 98 204502.
  • 9Yang S, Dammer S M, Bremond N, Zandvliet H J W, Kooij E S and Lohse 2007 Langmuir 23 7072.
  • 10Yang S, Kooij E S, Poelsema B, Lohse D and Zandvliet H J W 2008 EPL 81 64006.

同被引文献9

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部