期刊文献+

Synchronization of Markovian jumping complex networks with event-triggered control 被引量:1

Synchronization of Markovian jumping complex networks with event-triggered control
下载PDF
导出
摘要 This paper investigates event-triggered synchronization for complex networks with Markovian jumping parameters.Nonlinear dynamics with Markovian jumping parameters is considered for each node in a complex network. By utilizing the proposed event-triggered strategy, and based on the Lyapunov functional method and linear matrix inequality technology,some sufficient conditions for synchronization of complex networks are derived whether the transition rate matrix for the Markov process is completely known or not. Finally, a numerical example is presented to illustrate the effectiveness of the proposed theoretical results. This paper investigates event-triggered synchronization for complex networks with Markovian jumping parameters.Nonlinear dynamics with Markovian jumping parameters is considered for each node in a complex network. By utilizing the proposed event-triggered strategy, and based on the Lyapunov functional method and linear matrix inequality technology,some sufficient conditions for synchronization of complex networks are derived whether the transition rate matrix for the Markov process is completely known or not. Finally, a numerical example is presented to illustrate the effectiveness of the proposed theoretical results.
机构地区 School of Science
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期595-602,共8页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China(Grant No.11202084)
关键词 complex networks SYNCHRONIZATION event-triggered control Markovian jumping parameters complex networks,synchronization,event-triggered control,Markovian jumping parameters
  • 相关文献

参考文献35

  • 1Wang L M, Tang Y G, Chai Y Q and Wu F 2014 Chin. Phys. B 23 100501.
  • 2Cai G L, Jiang S Q, Cai S M and Tian L X 2014 Chin. Phys. B 23 120505.
  • 3Zhang J B, Ma Z J and Zhang G 2014 Chin. Phys. B 23 010507.
  • 4Wang J A, Nie R X and Sun Z Y 2014 Chin. Phys. B 23 050509.
  • 5Yao C G, Zhao Q and Yu J 2013 Phys. Lett. A 377 370.
  • 6Sang J Y, Yang J and Yue L J 2011 Chin. Phys. B 20 080507.
  • 7Hu A H and Xu Z Y 2011 Commun. Nonlinear Sci. Numer. Simul. 16 3237.
  • 8Grassi G 2012 Chin. Phys. B 21 050505.
  • 9Pourdehi S and Karimaghaee P 2012 Chaos 22 023145.
  • 10Wang S, Yu Y G and Wen G G 2014 Nonlinear Analysis: Hybrid systems 11 129.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部