期刊文献+

THz两级串联慢波结构研究

Design of Two-Stage Slow-Wave Structure of THz Oscillator
下载PDF
导出
摘要 提出了一种基于矩形交错双光栅的两级串联慢波结构,该高频结构采用双电子注通道和一个聚焦系统,高频信号分别在两段慢波结构中工作在-1和+1空间谐波状态。对该慢波结构的色散特性进行了模拟计算,分析了该器件工作原理。通过设计传输变换结构及两级慢波连接波导组成高频互作用电路,在295-320 GHz频率范围内获得较好的传输特性,反射系数S11〈-17 dB,传输系数S21〉-12.51 dB。利用三维粒子模拟设计的方法,在单注电流18 mA时,获得14.6 W的299.5 GHz信号输出,电子效率为1.7%。 A novel type of two-stage slow wave structure( SWS),for-1 and + 1 harmonic modes,was developed for terahertz oscillator,based on the half-period-staggered double grating arrays,to improve the interaction efficiency and output power. The transition structure and the connecting waveguide between the SWSs were also designed. The SWS dispersion characteristics and the beam-wave interaction with two electron beams were physically modeled,theoretically analyzed,and numerically simulated with software 3-D particle-in-cell( PIC). The transmission losses of the whole RF structure and reflection coefficient were found to be S21〉-12. 51 dB and S11〈-17 dB,respectively. The simulated results show that the novel two-stage SWS significantly enhances the interaction efficiency and output power. To be specific,with one 18 mA electron beam,the interaction efficiency of 1. 7%,at a radiation of 0. 3 THz,results in a high output power of 14. 6 W at 299. 5 GHz. We suggest that the newly-developed two-stage SWS be of some technological interest in design of terahertz vacuum electronic sources.
出处 《真空科学与技术学报》 EI CAS CSCD 北大核心 2015年第8期1000-1004,共5页 Chinese Journal of Vacuum Science and Technology
关键词 太赫兹 色散 真空电子器件 慢波结构 太赫兹源 Terahertz VEDS THz sources Multi-beam Slow wave structure
  • 相关文献

参考文献14

  • 1Wilmink G J, Grundt J E. Invited Review Article: Current State of Research on Biological Effects of Terahertz Radiation [J ]. Journal of Infrared Millimeter and Terahertz Waves, 2011,32(10) :074 - 1122.
  • 2Shumyatsky P, Alfano R R. Terahertz Sources[ J ]. Journal of Biomedical Optics,2011,16(3) :33001-033001-9.
  • 3Nagatsuma T. Terahertz Technologies:Present and Future[ J].IEICE Electronics Express,25 2011,8(14) : 1127 - 1142.
  • 4Kleine-Ostmann T, Nagatsuma T. A Review on Terahertz Communications Research [ J ]. Journal of Infrared, Millime- ter, and Terahertz Waves,2011,32(2) : 143- 171.
  • 5姚建铨.太赫兹技术及太赫兹仪器的发展趋势[J].现代科学仪器,2012,29(6):11-12. 被引量:2
  • 6Booske J H, Dobbs R J, Joye C D, et al. Vacuum Electronic High Power Terahertz Sources[ J]. IE.EE Transactions on Tera- hertz Science and Technology,2011,1 (1) :54 - 75.
  • 7张斐娜,蒙林,李海龙,唐永福,崔新红.新型反射腔在多频相对论返波振荡器中的粒子模拟研究[J].真空科学与技术学报,2013,33(7):678-683. 被引量:1
  • 8殷勇,陈玲,李海龙,王彬,蒙林.W波段宽扩展互作用速调管谐振系统研究[J].真空科学与技术学报,2013,33(5):439-443. 被引量:4
  • 9陆希成,童长江,王建国,李小泽,王光强,李爽,王雪锋.太赫兹真空电子器件微加工技术及后处理方法[J].真空科学与技术学报,2013,33(6):506-516. 被引量:11
  • 10Shin Y M, Baig A, Barchfeld R, et al. Experimental Study of Muhichromatic Terahertz Wave Propagation Through Planar Micro-Channels [ J ]. Applied Physics Letters, 2012, 100 (15) : 154103-1-154103-4.

二级参考文献97

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部