期刊文献+

二维Monge-Ampère型方程的Neumann问题

The Neumann Boundary Value Problems of Two Dimensional Monge-Ampère Equations
下载PDF
导出
摘要 该文通过构造闸函数将整体约化到边界,证明了二维Monge-Ampère型方程Neumann边值问题解的二阶导数估计,进而得到该方程Neumann边值问题经典解的存在性以及正则性. In this paper,we prove the second order derivatives estimates of Monge-Ampère type equations with Neumann boundary condition,using the method of auxiliary function which reduce the global estimates to the boundary.Then,we obtain the existence and regularity of the classical solutions for the equations.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2015年第4期794-802,共9页 Acta Mathematica Scientia
基金 国家自然科学基金(11101132) 湖北省教育厅科学技术研究项目(Q20120105) 创新思维导向的微分方程开放式实践教学体系的研究项目(201523)资助
关键词 二维Monge-Ampère型方程 Neumann边值条件 二阶导数估计 Two dimensional Monge-Ampere type equations Neumann boundary condition Second order derivatives estimates
  • 相关文献

参考文献19

  • 1Jiang F D, Trudinger N S, Yang X P. On the Dirichlet problem for Monge-Ampre type equations. Cale Var PDE, 2014, 49:1223-1236.
  • 2Ma X N, Trudinger N S, Wang X J. Regularity of potential functions of the optimal transportation problem. Arch Rat Mech Anal, 2005, 177:151-183.
  • 3Villani C. Optimal Transport-Old and New. Berlin: Springer, 2008.
  • 4Philippis G D, Figalli A. The Monge-Ampre equation and its link to optimal transportation, preprint.
  • 5Trudinger N S. Recent developments in elliptic partial differential equations of Monge-Ampre type. Proc Int Cong Math, Madrid, 2006, 3:291 302.
  • 6Li S Y. On the oblique boundary value problems for Monge-Ampbre equations. Pacific J Math, 1999, 190(1): 155-172.
  • 7Trudinger N S, Wang X J. On the second boundary value problem for Monge-Ampbre type equations and optimal transportation. Ann Scuola Norm Sup Pisa C1 Sci, 2009, VIII: 143-174.
  • 8Huang Y, Jiang F D, Liu J. Dirichlet problem for Monge-Ampbre type equations in optimal transportation. preprint.
  • 9Caffarelli L. Boundary regularity of maps with convex potentials If. Ann of Math, 1996, 144:453 496.
  • 10Delano P. Classical solvability in dimension two of the second boundary value problem associated with the Monge-Ampre operator. Ann Inst Henri Poincar, Analyse Non Lin6aire, 1991, 8:443 457.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部