期刊文献+

Preseismic deformation in the seismogenic zone of the Lushan MS7.0 earthquake detected by GPS observations 被引量:6

Preseismic deformation in the seismogenic zone of the Lushan M_S7.0 earthquake detected by GPS observations
原文传递
导出
摘要 A continuous GPS array across the southern segment of the Longmenshan fault zone recorded the deformation during the process of the Lushan MS7.0 earthquake that occurred on April 20, 2013. Such data can provide meaningful information regarding the dynamic evolution of crustal deformation in the seismogenic zone. Our studies have shown that the occurrence of the Wenchuan earthquake led to the loading of compressive and sinistral shearing strain on the southern segment of the Maoxian-Wenchuan fault, whereby the extrusion strain accumulated at a greater rate than before the Wenchuan earthquake. The strain time series in the seismogenic zone revealed that the principal compression strain rates decreased from west to east in the direction of N30°–45°W. Furthermore, the area to the east of Beichuan-Yingxiu fault behaved as a zone of compressive deformation with obvious sinistral shearing deformation. The surface strain and the first shearing strain time series decreased with time, while the area to the west of the Beichuan-Yingxiu fault behaved as a zone of dextral shear deformation that increased with time. Furthermore, the regional deformation field before the Lushan earthquake showed that the rate of extrusion strain accumulation in the southern segment of the Longmenshan fault zone was obviously larger than before the Wenchuan earthquake. Moreover, the sinistral shearing strain accumulated in the area of the southern segment of the Maoxian-Wenchuan fault. Based on the above analysis, we consider that the eastward movement of the Bayan Har block increased considerably following the Wenchuan earthquake, which enhanced the accumulation of compression strain in the southern segment of the Longmenshan fault zone. A continuous GPS array across the southern segment of the Longmenshan fault zone recorded the deformation during the process of the Lushan MS7.0 earthquake that occurred on April 20, 2013. Such data can provide meaningful information regarding the dynamic evolution of crustal deformation in the seismogenic zone. Our studies have shown that the occurrence of the Wenchuan earthquake led to the loading of compressive and sinistral shearing strain on the southern segment of the Maoxian-Wenchuan fault, whereby the extrusion strain accumulated at a greater rate than before the Wenchuan earthquake. The strain time series in the seismogenic zone revealed that the principal compression strain rates decreased from west to east in the direction of N30°–45°W. Furthermore, the area to the east of Beichuan-Yingxiu fault behaved as a zone of compressive deformation with obvious sinistral shearing deformation. The surface strain and the first shearing strain time series decreased with time, while the area to the west of the Beichuan-Yingxiu fault behaved as a zone of dextral shear deformation that increased with time. Furthermore, the regional deformation field before the Lushan earthquake showed that the rate of extrusion strain accumulation in the southern segment of the Longmenshan fault zone was obviously larger than before the Wenchuan earthquake. Moreover, the sinistral shearing strain accumulated in the area of the southern segment of the Maoxian-Wenchuan fault. Based on the above analysis, we consider that the eastward movement of the Bayan Har block increased considerably following the Wenchuan earthquake, which enhanced the accumulation of compression strain in the southern segment of the Longmenshan fault zone.
出处 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第9期1592-1601,共10页 中国科学(地球科学英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.41274008,41104004) the Basic Research Project of Institute of Earthquake Science of China Earthquake Administration(Grant No.2014IES010101)
关键词 GPS观测 地震发生 地震前 孕震区 芦山 龙门山断裂带 应变积累 剪切变形 Lushan Ms7.0 earthquake, GPS observations, GPS baseline time series, strain time series
  • 相关文献

参考文献17

二级参考文献154

共引文献1384

同被引文献119

引证文献6

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部