期刊文献+

锂离子电池富锂锰基正极材料的研究进展 被引量:9

Research Progress of Mn-Based Lithium-Rich Cathode Materials for Li-Ion Batteries
下载PDF
导出
摘要 随着新能源如电动汽车、储能电站的蓬勃发展,人们对下一代高性能锂离子电池的能量密度、功率密度和循环寿命提出了更高的要求.而富锂锰基正极材料xLi2Mn03·(1-x)LiM02(O〈x〈1,M=Mn、Co、Ni…)具有可逆比容量高(240~280mAh·g^-1,2.0~4.8V)、电化学性能较佳、成本较低等优点,已吸引了研究者的关注,有望成为下一代锂离子电池用正极材料.本实验室采用固相法和溶胶.凝胶法制备不同的富锂锰基正极材料,其中,溶胶-凝胶法制得的Li[Li0.2Mn0.54Ni0.13C0.13]O2电极首周期放电比容量277.3mAh·g^-1,50周期循环后容量272.8mAh·g^-1,容量保持率98.4%.本文重点结合本实验室的研究工作,对新型富锂锰基正极材料xLi2MnO3·(1-x)LiMO2的结构、合成、电化学性能改性和充放电机理等进行总结与评述. With rapid development of new energy industry like electric vehicles and energy storage station, these fields highly demand the next generation of high performance Li-ion battery systems with stronger energy density, higher power density, and longer cycling life. Lithium-rich Mn-based cathode materials, xLi2MnO3·(1-x)Li MO2(M = Mn, Co, Ni …), have become the hot topic and drawn attentions of scholars worldwide because of their high reversible capacity exceeding 240 m Ah·g-1, excellent electrochemical properties, and low cost, which makes them most promising cathode material candidates for next Li-ion battery system.The cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2prepared in our laboratory shows high initial discharge capacity of 277.3 m Ah·g-1with retention of 98.4% after 50 cycles. Based on our previous works, we have introduced and reviewed the structures, preparation methods, and charge/discharge mechanisms of these lithium-rich Mn-based cathode materials xLi2MnO3·(1-x)Li MO2.
出处 《电化学》 CAS CSCD 北大核心 2015年第2期138-144,共7页 Journal of Electrochemistry
基金 上海市自然科学基金项目(No.15ZR1418100) 上海市企业自主创新专项项目(No.CXY-2014-24)资助
关键词 锂离子电池 富锂正极材料 共沉淀法 xLi2MnO3·(1-x)LiMO2 Li-ion battery lithium-rich cathode materials co-precipitation method xLi2MnO3·(1-x)LiMO2
  • 相关文献

参考文献47

  • 1Nagaura T, Tozawa K. Lithium ion rechargeable battery [J]. Progress in Batteries and Solar Cells, 1990, 9 (2): 209-217.
  • 2Padhi A K, Nanjundaswamy K S, Goodenough J B. Phos- pho-olivines as positive-electrode materials for recharge- able lithium batteries [J]. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194.
  • 3Scott I D, Jung Y S, Cavanagh A S, et al. Ultrathin coat- ings on nano-LiCoO2 for Li-ion vehicular applications [J]. Nano Letters, 2011, 11(2): 414-418.
  • 4Ohzuku T, Makimura Y. Layered lithium insertion materi- al of LiNinCozMnlnO2 for lithium-ion batteries[J]. Chem- istry Letters, 2001, 7: 642-643.
  • 5Jiang K C, Xin S, Lee J S, et al. Improved kinetics of LiNil/3Col/-,MnlO2 cathode material through reduced graphene oxide networks[J]. Physical Chemistry Chemical Physics, 2012, 14(8): 2934-2939.
  • 6Yuan L X, Wang Z H, Zhang W X, et al. Development and challenges of LiFePO4 cathode material for lithium-ion batteries[J]. Energy & Environmental Science, 2011, 4(2): 269-284.
  • 7Li J, Klopsch R, Stan M C, et al. Synthesis and electro- chemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability[J]. Journal of Power Sources, 2011,196(10): 4821-4825.
  • 8Yabuuchi N, Yoshii K, Myung S T, et al. Detailed studies of a high-capacity electrode material for rechargeable bat- teries, LiEMnO3-LiCol/3Ni/3Mnt/302[J]. Journal of the Ameri- can Chemical Society, 2011,133(12): 4404-4419.
  • 9Park K S, Cho M H, Jin S J, et al. Structural and electrochemi- cal properties of nanosize layered Li(Lil/sNi/0Co/lna)O2 [J]. Electrochemical and Solid-State Letters, 2004, 7 (8):A239-A241.
  • 10Martha S K, Nanda J, Veith G M, et al. Electrochemical and rate performance study of high-voltage lithittm-rich composition: LilMnoszsNi0.175Co0xO2[J]. Journal of Power Sources, 2012, 199: 220-226.

同被引文献78

  • 1张波,刘晓晨,李德军.锂硫二次电池研究进展[J].天津师范大学学报(自然科学版),2020,40(1):1-8. 被引量:2
  • 2曾乐才.储能锂离子电池产业化发展趋势[J].上海电气技术,2012,5(1):43-48. 被引量:20
  • 3唐致远,吴菲.改性石墨用作锂离子蓄电池负极材料[J].电源技术,2006,30(2):155-161. 被引量:5
  • 4钟耀东,赵新兵,强颖怀.功能材料纯镍钴酸锂与掺杂后的电化学阻抗谱及红外光谱的探讨[J].金属功能材料,2007,14(5):24-27. 被引量:3
  • 5TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
  • 6GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
  • 7ZHU Ji-ping, ZHANG Sheng, XIN Zhi-qiang, XU Quan-bao, SU Hui. Synthesis and electrochemical properties of LiCo0.9Ni0.05Mn0.05O2 cathode material with high rate capability for lithium ion batteries[J]. The Chinese Journal of Nonferrous Metals 2014, 24(11): 2813-2820.
  • 8MARTHA S K, NANDA J, WVEITH G M, DUDNEY N J. Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2[J]. Journal of Power Sources, 2012, 199(1): 220-226.
  • 9JOHNSON C S, Li N, LEFIEF C, LEFIEF C, VAUGHEY J T, THACKERAY M M. Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3. (1-x)LiMno.333Ni0.333Co0.33302(0 ≤ x ≤ 0.7)[J]. Chemistry of Materials, 2008, 20(19): 6095-6106.
  • 10THACKERAY M M, KANG S H, JOHNSON C S, VAUGHEY J T, BENEDEK R, HACKNEY S A. Li2MnO3-stabilized LiMO2(M=Mn, Ni, Co) electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2007, 17(30): 3112-3125.

引证文献9

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部