期刊文献+

CoAl_2O_4包覆LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2的电化学性能 被引量:1

Electrochemical Performance of CoAl_2O_4-Coated LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2
下载PDF
导出
摘要 通过共沉淀法制得类球形锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2,并用非水相共沉法对其进行CoAl2O4包覆得到LNCMO(x).采用x射线衍射(XRD)、扫描电子显微术(SEM)和透射电子显微术(TEM)测试材料的结构和观察材料形貌.结果表明.CoAl2O4在材料表面形成8nm均匀包覆层,未改变主体材料的结构.电化学性能测试表明,1%(bymass)CoAl204包覆量的LiNi1/3Co1/3Mn1/3O2材料(LNCMO(1))高充电电压(3.0~4.6V,150mA·g^-1)100周期循环放电容量保持率为93.7%(无包覆LNCMO(0)保持率为74.4%);55℃高温100周期循环容量保持率为77%(无包覆LNCMO(0)保持率17%).XRD和电感耦合等离子体原子发射光谱(ICP—AES)测试表明,CoAl2O4包覆的LNCMO(x)材料可有效地减缓材料中Mn离子在电解液的溶解,提高材料结构稳定性和热稳定性. A method to improve the electrochemical performance of Li Ni1/3Co1/3Mn1/3O2 for high voltage lithium-ion battery by Co Al2O4 coating was present in this work. The effects of Co Al2O4 coatings on the structure and electrochemical properties of Li Ni1/3Co1/3Mn1/3O2 were investigated in detail. The results show that Co Al2O4 forms a thin layer of 8 nm on the surface of Li Ni1/3Co1/3Mn1/3O2 without destroying the structure of the core material. The Co Al2O4-coated Li Ni1/3Co1/3Mn1/3O2 possesses better rate capability and cycle performance than the uncoated sample. The excellent cycling performance can be obtained even with1%(by mass) Co Al2O4 coating, for example, the capacity retentions at the 100 th cycle increase from 74.4% to 93.7% at room temperature, and 17.7% to 77% at 55 oC, respectively. It was also confirmed that the Co Al2O4 coating could depress Mn ions dissolving into the electrolyte, and could lead to the enhancement in the structural stability and the thermal stability of Li Ni1/3Co1/3Mn1/3O2, suggesting that the Co Al2O4 coating is an efficient way to improve the electrochemical performance of Li Ni1/3Co1/3Mn1/3O2.
出处 《电化学》 CAS CSCD 北大核心 2015年第2期145-151,共7页 Journal of Electrochemistry
基金 福建省自然科学基金项目(No.2012J05028)资助
关键词 锂离子电池 LINI1/3CO1/3MN1/3O2 电化学性能 CoAl2O4包覆 lithium-ion battery LiNi1/3Co1/3Mn1/3O2 electrochemical performance CoAl2O4 coating
  • 相关文献

参考文献26

  • 1Ohzuku T, Makirnura Y. Layered lithium insertion materi- al of LiCov3Niv3MnleO2 for lithium-ion batteries[J]. Chem- istry Letters, 2001, 30(7): 642-643.
  • 2Guo R, Shi P F, Cheng X Q, et al. Synthesis and character- ization of carbon-coated LiNilCov3Mnv302 cathode mate- rial prepared by polyvinyl alcohol pyrolysis route [J]. Jour- nal of Alloys and Compounds, 2009, 473(1/2): 53-59.
  • 3Shaju K M, Brucce P G. Macroporous Li(NilaCov3Mnv3)O2: A high-power and high-energy cathode for rechargeable lithium batteries[J]. Advanced Materials, 2006, 18(17): 2330-2334.
  • 4Zheng J, Chen J J, Jia X. Electrochemical performance of the LiNi,ColMnO2 in aqueous electrolyte[J]. Journal of the Electrochemical Society, 2010, 157(6): 702-706.
  • 5Sun Y K, Lee B R, Noh H J, et al. A novel concentra- tion-gradient Li[Ni0Co0.oTMnoJo]O2 cathode material for high-energy lithium-ion batteries[J]. Journal of Materials Chemistry, 2011, 21(27): 10108-10112.
  • 6Wu F, Wang M, Su Y F, et al. Effect of TiO2-coating on the electrochemical performances of LiColi3Nilcvln/302[J]. Journal of Power Sources, 2009, 191(2): 628-632.
  • 7Huang C H, Huang K L, Liu S Q, et al. Storage behavior of LiNil/aCo/3Mn/3OE/artificial graphite Li-ion cells [J]. Elec- trochimica Acta, 2009, 54(21): 4783-4788.
  • 8Li C, Zhang H P, Fu L J, et al. Cathode materials modified by surface coating for lithium ion batteries[J]. Electrochim- ica Acta, 2006, 51(19): 3872-3883.
  • 9Cho J, Kim Y J, Park B. Novel LiCoO2 cathode material with A|203 coating for a Li ion cell[J]. Chemistry of Mate- rials, 2000, 12(12): 3788-3791.
  • 10Han Z H, Yu J P, Zhan H, et al. Sb203-modified LiNiv3ColMn/302 material with enhanced thermal safety and electrochemical property[J]. Journal of Power Sources, 2014, 254:106-111.

二级参考文献33

  • 1苏勉曾,固体化学导论,1987年,223页
  • 2Liu D, Trottier J, Charest P, Fréchette J, Guerfi A, Mauger A, Julien CM, Zaghib K. Effect of nano LiFePO4 coating on LiMn1.5Ni0.5O4 5 V cathode for lithium ion batteries. J Power Sources, 2012, 204: 127-132.
  • 3Hai B, Shukla AK, Duncan H, Chen G. The effect of particle surface facets on the kinetic properties of LiMn1.5Ni0.5O4 cathode materials. J Mater Chem A, 2013, 1: 759-769.
  • 4Ding YL, Xie J, Cao GS, Zhu TJ, Yu HM, Zhao XB. Single-crystalline LiMn2O4 nanotubes synthesized via template-engaged reaction as cathodes for high-power Lithium ion batteries. Adv Funct Mater, 2011, 21: 348-355.
  • 5Wang Y, Yang G, Yang Z, Zhang L, Fu M, Long H, Li Z, Huang Y, Lu P. High power and capacity of LiNi0.5Mn1.5O4 thin films cathodes prepared by pulsed laser deposition. Electrochim Acta, 2013, 102: 416-422.
  • 6Liu GQ, Wen L, Liu YM. Spinel LiNi0.5Mn1.5O4 and its derivatives as cathodes for high-voltage Li-ion batteries. J Solid State Electrochem, 2010, 14: 2191-2202.
  • 7Xiao J, Chen X, Sushko PV, Sushko ML, Kovarik L, Feng J, Deng Z, Zheng J, Graff GL, Nie Z, Choi D, Liu J, Zhang JG, Whittingham MS. High-performance LiNi0.5Mn1.5O4 spinel controlled by Mn3+ concentration and site disorder. Adv Mater, 2012, 24: 2109-2116.
  • 8Jung HG, Jang MW, Hassoun J, Sun YK, Scrosati B. A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery. Nat Commun, 2011, 2: 516.
  • 9Chong J, Xun S, Song X, Liu G, Battaglia VS. Surface stabilized LiNi0.5Mn1.5O4 cathode materials with high-rate capability and long cycle life for lithium ion batteries. Nano Energy, 2013, 2: 283-293.
  • 10Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater, 2009, 22: 587-603.

共引文献9

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部