期刊文献+

具有模态词□φ=□_(1φ)∨□_(2φ)且可靠与完备的公理系统 被引量:1

Sound and Complete Axiomatic System with a Modality □φ=□_(1φ)∨□_(2φ)
下载PDF
导出
摘要 提出具有模态词□φ=□_(1φ)∨□_(2φ)的命题模态逻辑,给出其语言、语法与语义,其公理化系统是可靠与完备的,其中,□_1与□_2是给定的模态词.该逻辑的公理化系统具有与公理系统S5相似的语言,但具有不同的语法与语义.对于任意的公式φ,□φ=□_(1φ)∨□_(2φ);框架定义为三元组<W,R_1,R_2>,模型定义为四元组<W,R_1,R_2>;在完备性定理证明过程中,需要在由所有极大协调集所构成的集合上构造出两个等价关系,其典型模型的构建方法与经典典型模型的构建方法不同.如果□_1的可达关系R_1等于□_2的可达关系R_2,那么该逻辑的公理化系统变成S5. This paper proposes a propositional modal logic with a modality □φ=□1V□2φ, and specifies the language, the syntax and the semantics for the logic. The axiomatic system for □ is sound and complete, where □1 and □2 are given in this paper. The axiomatic system for the logic has the similar language, but has the different syntax and semantics. For any formula φ, □φ=□1V□2φ; the frame for the axiomatic system is defined as an tripleW,R1,R2, and the model is defined as quadruple W,R1,R2,I. When the completeness theorem is proved, two equivalence relations are constructed on the set that is made up of all the maximal consistent sets. The construction method of a canonical model for the axiomatic system is different from the classical canonical model. If the accessibility relation R1 for □1 is the accessibility relation R2 for □2, then the axiomatic system for □ changes into S5.
出处 《软件学报》 EI CSCD 北大核心 2015年第9期2286-2296,共11页 Journal of Software
基金 国家自然科学基金(61363047 61173063 60773059 61035004) 江西省教育厅科技厅项目(GJJ14748) 江西省科技厅项目(20111BBE50008 2011ZBBE50035 20112BBE50052)
关键词 命题模态逻辑 模态词 公理系统 propositional modal logic modality the axiomatic system
  • 相关文献

参考文献15

  • 1Hughes GE, Cresswell MJ. A New Introduction to Modal Logic. Burns & Oates, 1996.
  • 2Proietti C. Intuitionistic epistemic logic, kripke models and fitch's paradox. Journal of Philosophical Logic, 2012,41(5):877-900. [doi: 10.1007/s10992-011-9207-1 ].
  • 3Carnielli WA, Pizzi C, Bueno-Soler J. Modalities and Multimodalities. Vo1.12, Springer-Verlag, 2008. [doi: 10.1007/978-1-4020- 8590-1].
  • 4Corsi G, Orlandelli E. Free quantified epistemic logics. Studia Logica, 2013,101(6):1159-1183. [doi: 10.1007/s11225-013-9528-x].
  • 5Blanco R, de Miguel Casado G, Requeno JI, Colom JM. Temporal logics for phylogenetic analysis via model checking. In: Proc. of the 2010 IEEE Int'l Conf. on Bioinformaties and Biomedicine Workshops (BIBMW). IEEE, 2010. 152-157. [doi: 10.1109/TCBB. 2013.87].
  • 6Van Benthem J, Minic~i S. Toward a dynamic logic of questions. Journal of Philosophical Logic, 2012,41:633-669. [doi: 10.1007/s 10992-012-9233-7].
  • 7Sietsma F, van Eijck J. Action emulation between canonical models. Journal of Philosophical Logic, 2013,42:905-925. [doi: 10.1007/s 10992-013-9298-y].
  • 8Lu ZW. Logic in Computer Science. 2nd ed., Beijing: Science Press, 2002 (in Chinese).
  • 9Ebbinghaus HD, Flum J, Thomas W. Mathematical Logic. Springer-Verlag, 1994. [doi: 10.1007/978-1-4757-2355-7].
  • 10Sun MY, Deng SB, Chen B, Cao CG, Sui YF. Formula-Layered predicate modal logic. Ruan Jian Xue Bao/Journal of Software, 2014,25(5):1014-1024 (in Chinese with English abstract), http://www.jos.org.cn/1000-9825/4500.htm [doi: 10.13328/j.cnki.jos. 004500].

二级参考文献14

  • 1Fitting M, Mendelsohn R. First-Order Modal Logic. Dordrecht: Kluwer Academic Publishers, 1998.
  • 2Hughes GE, Cresswell MJ. A New Introduction to Modal Logic. Lodon, New York: Routledge, 1996.
  • 3Jiang F. Ontology-Based first-order modal logic [Ph.D. Thesis]. Beijing: Institute of Computing Technology, the Chinese Academy of Sciences, 2007 (in Chinese with English abstract).
  • 4Aloni M. Individual concepts in modal predicate logic.Journal of Philosophical Logic, 2005,34(1):1-64 [doi: 10.1007/s10992- 004-4065-8].
  • 5Catterson T. Hintikka on the problem with the problem of transworld identity. In: Symons J, Kolak D, eds. Proc. of the Quantifiers, Questions and Quantum Physics. Berlin, Heidelburg: Springer-Verlag, 2004.33-47 [doi: 10.1007/978-1-4020-32110-0_2].
  • 6Kaplan D. Transworld heir lines. In: Loux MJ, ed. The Possible and the Actual. Ithaca: Cornell University Press, 1979. 88-109.
  • 7Kripke S. Naming and Necessity. Oxford: Basil Blackwell Publisher, 1980.
  • 8Plantinga A. Transworld identity or worldbound individuals? In: Munitz M, ed. Proc. of the Logic and Ontology. New York: New York University Press, 1973. 146-165.
  • 9Shen YM. Translations between logics: Basic definitions, classifications and logical properties [Ph.D. Thesis]. Beijing: Institute of Computing Technology, the Chinese Academy of Sciences, 2010 (in Chinese with English abstract).
  • 10Lewis D. Counterpart theory and quantified modal logic.Journal of Philosophy, 1968,65(5):113-126 [doi: 10.2307/2024555] .

共引文献5

同被引文献19

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部