期刊文献+

Mechanical properties and microstructural evolution of ultrafine grained zircaloy-4 processed through multiaxial forging at cryogenic temperature 被引量:2

低温多向锻造锆-4合金的力学性能和超细晶组织演化(英文)
下载PDF
导出
摘要 The mechanical properties and microstructural evolution of zircaloy-4 subjected to cumulative strains of 1.48,2.96,4.44 and 5.91 through multiaxial forging(MAF) at cryogenic temperature(77 K) were investigated.The mechanical properties of the MAF treated alloy were measured through universal tensile testing and Vickers hardness testing equipment.The zircaloy-4 deformed up to a cumulative strain of 5.91 showed improvement in both ultimate tensile strength and hardness from 474 MPa to 717 MPa and from HV 190 to HV 238,respectively,as compared with the as-received alloy.However,there was a noticeable decrement in ductility(from 18%to 3.5%) due to the low strain hardening ability of deformed zircaloy-4.The improvement in strength and hardness of the deformed alloy is attributed to the grain size effect and higher dislocation density generated during multiaxial forging.The microstructural evolutions of deformed samples were characterized by optical microscopy and transmission electron microscopy(TEM).The evolved microstructure at a cumulative strain of 5.91 obtained after MAF up to 12 cycles depicted the formation of ultrafine grains with an average size of 150-250 nm. 研究低温(77K)多向锻造锆-4合金累积应变为1.48,2.96,4.44和5.91时的力学性能和组织演变。通过万能拉伸测试和维氏硬度实验测得多向锻造合金的力学性能。相对于原始合金,当锆-4合金变形的累积变形为5.91时,其极限抗拉强度从474MPa提高到717MPa,维氏硬度从HV 190提高到HV 238。然而,由于锆-4合金的低应变硬化,其延展性显著降低(18%-3.5%)。变形合金强度和硬度的提高是因为多向锻造引起的晶粒尺寸效应和高的位错密度。采用光学显微镜和透射电镜表征变形试样的显微组织演化。当累积应变为5.91时,经12次多向锻造后合金的微观组织演化主要是超细晶的形成,其平均晶粒尺寸为150-250nm。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2221-2229,共9页 中国有色金属学报(英文版)
基金 BRNS,Bombay for their financial grant to this work through grant No.BRN-577-MMD
关键词 ZIRCALOY-4 multiaxial forging cryogenic temperature ultrafine-grain microstructural evolution mechanical properties 锆-4合金 多向锻造 低温 超细晶 显微组织演变 力学性能
  • 相关文献

参考文献38

  • 1VALIEV R Z, ESTRIN Y, HORITA Z, LANGDON T G, ZECHETBAUER M J, ZHU Y T. Producing bulk ultrafine-grained materials by severe plastic deformation [J]. Journal of the Minerals Metals and Materials Society, 2006, 58: 33-39.
  • 2ZRNIK J, DOBATKIN S V, MAMUZIC I. Processing of metals by severe plastic deformation (SPD) - Structure and mechanical properties respond [J]. Metalurgija, 2008, 47: 211-216.
  • 3SOLIMAN M S, EL-DANAF E A, ALMAJID A A. Effect of equal-channel angular pressing process on properties of 1050 Al alloy [J]. Materials and Manufacturing Processes, 2012, 27: 746-750.
  • 4RAEI M, TOROGHINEJAD M R, JAMAATI R. Nano/ultrafine structured AAllOO by ARB process [J]. Materials and Manufacturing Processes, 2011, 26: 1352-1356.
  • 5YU H L, LU C, TIEU A K, KONG C. Fabrication of nanostructured aluminum sheets using four-layer accumulative roll bonding [J]. Materials and Manufacturing Processes, 2014, 29: 448-453.
  • 6THAM Y w, FU M W, HNG H H, PEl Q X, LIM K B. Microstructure and properties of AI-6061 alloy by equal channel angular extrusion for 16 passes [J]. Materials and Manufacturing Processes, 2007, 22: 819-824.
  • 7FU M w, YONG M S, PEl Q X, HNG H H. Deformation behavior study of multi-pass ecae process for fabrication of u1trafine or nanostructured bulk materials [J]. Materials and Manufacturing Processes, 2006, 21: 507-512.
  • 8DAS D, SAMANTA A, CHATTOPADHYAY P P. Deformation behavior of bulk ultrafine grained copper prepared by sub-zero rolling and controlled recrystallization [J]. Materials and Manufacturing Processes, 2006, 21: 698-702.
  • 9ESTRIN Y, VINOGRADOV A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science [J]. Acta Materialia, 2013, 61: 782-817.
  • 10HAN B J. Ultrafine grained Fe-32% Ni alloy processed by multiaxial forging [J]. Advanced Materials Research, 2010, 97: 187-190.

二级参考文献22

  • 1D.L. Holt: J. Appl. Phys., 1970, 41, 3197.
  • 2K. Wang, N.R. Tao, G. Liu, J. Lu and K. Lu: Acta Mater., 2006, 54, 5281.
  • 3N. Hansen: Mater. Sci. Technol., 1990, 6, 1039.
  • 4C. Zener and J.H. Hollomon: J. Appl. Phys., 1944, 15, 22.
  • 5H.J. McQueen and J.E. Hockett: Metall. Trans., 1970, 1, 2997.
  • 6C.M. Sellars: in Proc. of the Conf. on Hot Working and Forming Processes, eds. C.M. Sellars and G.J. Davies, IMS, London, 1980, 3.
  • 7R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov: Prog. Mater. Sci., 2000, 45, 103.
  • 8Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon: Acta Mater., 1998, 48, 3317.
  • 9K. Nakashima, Z. Horita, M. Nemoto and T.G. Lang- don: Acta Mater, 1998, 46, 1589.
  • 10A.P. Zhilyaev, D.L. Swisher, K. Oh-ishi, T.G. Langdon and T.R. McNelley: Mater. Sci. Eng. A, 2006, 429, 137.

共引文献11

同被引文献23

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部