摘要
Li3Mg(2x)V(2-2x)(PO4)3/C(x=0,0.05,0.1,0.2) composites were synthesized by carbothermic reduction,using a self-made MgNH4PO4/MgHPO4 compound as Mg-doping agent.X-ray diffraction(XRD),scanning electron microscope(SEM),electrochemical performance tests were employed to investigate the effect of Mg doping on Li3V2(PO4)3/C samples.The results showed that a proper quantity of Mg doping was beneficial to the reduction of charge transfer resistance of Li3V2(PO4)3/C compound without changing the lattice structure,which led to larger charge/discharge capacity and better cycle performance especially at high current density.Li3Mg(2x)V(2-2x)(PO4)3/C sample with x=0.05 exhibited a better performance with initial charge/discharge capacity of146/128 mA·h/g and discharge capacity of 115 mA·h/g at 5C,while these two figures were 142/118 mA·h/g and 90 mA·h/g respectively for samples without Mg doping,indicating that a proper amount of doped Mg can improve the electrochemical performance of LVP sample.All of these proved that,as a trial Mg dopant,the synthesized MgNH4PO4/MgHPO4 compound exhibited well doping effect.
使用自制的MgNH_4PO_4/MgHPO_4混合物为掺杂剂,利用碳热还原法制备Li_3Mg_(2x)V_(2-2x)(PO_4)_3/C(x=0,0.05,0.1,0.2)材料。运用XRD、SEM、电化学性能测试等方法研究Mg掺杂对Li_3V_2(PO_4)_3/C的影响。结果表明,适量的Mg掺杂不会改变Li_3V_2(PO_4)_3/C的结构,且有助于减小电荷迁移阻力,由此提高材料的容量,改善循环和倍率性能。当x=0.05时,Li_3Mg_(2x)V_(2-2x)(PO_4)_3/C表现出更好的性能,首次充放电容量为146/128 mA·h/g,在5C电流强度下放电容量约为115 mA·h/g;而当x=0时,两者分别为142/118 mA·h/g和90 mA·h/g。表明适量的Mg掺杂能提高磷酸钒锂的电化学性能。合成的MgNH_4PO_4/MgHPO_4作为一种尝试性镁掺杂剂,能起到良好的掺杂效果。
基金
Project(2014CB643405)supported by the National Basic Research Program of China